变量
在Python中变量的本质是一个指针(类比为可贴在任何物品上的标签,Java中则可以类比为盒子)。
a = 1 # 生成对象,把a指向该对象
a = "abc" # 把a指向别的对象
a = [1,2,3]
b = a
print (id(a), id(b))
print (a is b)
b.append(4) # 相当于在列表上贴上a、b两个标签,对a/b操作都是在同一个对象上完成
print (a)
# ========
a = [1,2,3,4] # not a is b 此时a、b可理解为贴在不同对象上的标签
b = [1,2,3,4] # a == b,表示a、b所指的对象中值是相等的
a = 1
b = 1 # a is b,a、b都是从一个常量池获取,所以是同一个对象
class People:
pass
person = People()
if type(person) is People:
print("yes")
一个典型的传参错误问题
向函数传入list、dict,对象可能会被修改。
def add(a, b):
a += b
return a
class Company:
def __init__(self, name, staffs=[]):
self.name = name
self.staffs = staffs
def add(self, staff_name):
self.staffs.append(staff_name)
def remove(self, staff_name):
self.staffs.remove(staff_name)
if __name__ == "__main__":
com1 = Company("com1", ["ywh1", "ywh2"])
com1.add("ywh3")
com1.remove("ywh1")
print(com1.staffs)
com2 = Company("com2")
com2.add("ywh")
print(com2.staffs)
print(Company.__init__.__defaults__)
com3 = Company("com3")
com3.add("ywh5")
print(com2.staffs)
print(com3.staffs)
print(com2.staffs is com3.staffs)
a = 1
b = 2
c = add(a, b)
print(a, b, c) # 1, 2, 3
a = [1, 2]
b = [3, 4]
c = add(a, b)
print(a, b, c) # [1, 2, 3, 4], [3, 4], [1, 2, 3, 4]
a = (1, 2)
b = (3, 4)
c = add(a, b)
print(a, b, c) # (1, 2) (3, 4) (1, 2, 3, 4)
垃圾回收
Python的GC是基于引用计数、标记-清除机制、分代技术,详情见:https://github.com/yipwinghong/interview_python
a = object()
b = a
del a
print(b)
print(a)
class A:
def __del__(self):
pass
元类编程
property动态属性
不建议直接访问成员变量,而使用property实现get、set方法,通过代码逻辑控制访问权限。
from datetime import date, datetime
class User:
def __init__(self, name, birthday):
self.name = name
self.birthday = birthday
self._age = 0
# def get_age(self):
# return datetime.now().year - self.birthday.year
@property
def age(self):
return datetime.now().year - self.birthday.year
@age.setter
def age(self, value):
self._age = value
if __name__ == "__main__":
user = User("ywh", date(year=1987, month=1, day=1))
user.age = 30
print (user._age)
print(user.age)
getattr与getattribute
# __getattr__, __getattribute__
from datetime import date
class User:
def __init__(self,info={}):
self.info = info
# 在__getattribute__抛出异常时调用
def __getattr__(self, item):
return self.info[item]
# 是__getattr__更高级的封装,使用obj.attr但查找不到属性的时候调用,但尽量不要重写
def __getattribute__(self, item):
return "ywh"
if __name__ == "__main__":
user = User(
info={"company_name": "alibaba", "name": "ywh"}
)
print(user.test)
属性描述符
利用属性描述符做参数类型检查(类似Django的做法)
from datetime import date, datetime
import numbers
# 属性描述符(__get__、__set__、__delete__实现任意一或多个)
class IntField:
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
if not isinstance(value, numbers.Integral):
raise ValueError("int value need")
if value < 0:
raise ValueError("positive value need")
self.value = value
def __delete__(self, instance):
pass
class NonDataIntField:
# 非数据属性描述符
def __get__(self, instance, owner):
return self.value
class User:
age = IntField()
# age = NonDataIntField()
'''
如果user是某个类的实例,那么user.age(以及等价的getattr(user,’age’))
首先调用__getattribute__。如果类定义了__getattr__方法,
那么在__getattribute__抛出 AttributeError 的时候就会调用到__getattr__,
而对于描述符(__get__)的调用,则是发生在__getattribute__内部的。
user = User(), 那么user.age 顺序如下:
(1)如果“age”是出现在User或其基类的__dict__中, 且age是data descriptor, 那么调用其__get__方法, 否则
(2)如果“age”出现在user的__dict__中, 那么直接返回 obj.__dict__[‘age’], 否则
(3)如果“age”出现在User或其基类的__dict__中
(3.1)如果age是non-data descriptor,那么调用其__get__方法, 否则
(3.2)返回 __dict__[‘age’]
(4)如果User有__getattr__方法,调用__getattr__方法,否则
(5)抛出AttributeError
'''
# class User:
#
# def __init__(self, name, email, birthday):
# self.name = name
# self.email = email
# self.birthday = birthday
# self._age = 0
#
# # def get_age(self):
# # return datetime.now().year - self.birthday.year
#
# @property
# def age(self):
# return datetime.now().year - self.birthday.year
#
# @age.setter
# def age(self, value):
# #检查是否是字符串类型
# self._age = value
if __name__ == "__main__":
user = User()
user.__dict__["age"] = "abc"
print (user.__dict__)
print (user.age)
# print (getattr(user, 'age'))
# user = User("ywh", date(year=1987, month=1, day=1))
# user.age = 30
# print (user._age)
# print(user.age)
__new__
与__init__
- new是用来控制对象的生成过程, 在对象生成之前;
- init是用来完善对象的,如果new方法不返回对象, 则不会调用init函数。
class User:
def __new__(cls, *args, **kwargs):
print (" in new ")
return super().__new__(cls)
def __init__(self, name):
print (" in init")
pass
a = int()
if __name__ == "__main__":
user = User(name="ywh")
元类
- 类的本质是对象,
type
是创建类的类; - 元类是创建类的类:对象<- class(对象) <- type;
- 使用元类可以控制类的实例化过程(类定义中指定metaclass属性,通过metaclass去创建类);
- 类的实例化过程:首先寻找metaclass,去创建类对象、实例;
- 一般不直接使用
type
,而创建一个MetaClass继承type
,再在要实例化的类中指定metaclass
属性为这个MetaClass。
def create_class(name):
if name == "user":
class User:
def __str__(self):
return "user"
return User
elif name == "company":
class Company:
def __str__(self):
return "company"
return Company
def say(self):
return "i am user"
# return self.name
class BaseClass():
def answer(self):
return "i am baseclass"
# 使用元类控制类的实例化过程
from collections.abc import *
class MetaClass(type):
def __new__(cls, *args, **kwargs):
return super().__new__(cls, *args, **kwargs)
class User(metaclass=MetaClass):
def __init__(self, name):
self.name = name
def __str__(self):
return "user"
if __name__ == "__main__":
# MyClass = create_class("user")
# my_obj = MyClass()
# print(type(my_obj))
# type动态创建类
User = type(
"User",
(BaseClass, ),
{"name":"user", "say":say}
)
my_obj = User(name="ywh")
print(my_obj)
实例:实现简易ORM
import numbers
class Field:
pass
# 整型描述符
class IntField(Field):
def __init__(self, db_column, min_value=None, max_value=None):
self._value = None
self.min_value = min_value
self.max_value = max_value
self.db_column = db_column
if min_value :
if not isinstance(min_value, numbers.Integral):
raise ValueError("min_value must be int")
elif min_value < 0:
raise ValueError("min_value must be positive int")
if max_value :
if not isinstance(max_value, numbers.Integral):
raise ValueError("max_value must be int")
elif max_value < 0:
raise ValueError("max_value must be positive int")
if min_value and max_value :
if min_value > max_value:
raise ValueError("min_value must be smaller than max_value")
def __get__(self, instance, owner):
return self._value
def __set__(self, instance, value):
if not isinstance(value, numbers.Integral):
raise ValueError("int value need")
if value < self.min_value or value > self.max_value:
raise ValueError("value must between min_value and max_value")
self._value = value
# 字符串型描述符
class CharField(Field):
def __init__(self, db_column, max_length=None):
self._value = None
self.db_column = db_column
if not max_length:
raise ValueError("you must spcify max_lenth for charfiled")
self.max_length = max_length
def __get__(self, instance, owner):
return self._value
def __set__(self, instance, value):
if not isinstance(value, str):
raise ValueError("string value need")
if len(value) > self.max_length:
raise ValueError("value len excess len of max_length")
self._value = value
class ModelMetaClass(type):
def __new__(cls, name, bases, attrs, **kwargs):
if name == "BaseModel":
return super().__new__(cls, name, bases, attrs, **kwargs)
fields = {}
for key, value in attrs.items():
if isinstance(value, Field):
fields[key] = value
attrs_meta = attrs.get("Meta", None)
_meta = {}
db_table = name.lower()
if attrs_meta :
table = getattr(attrs_meta, "db_table", None)
if table :
db_table = table
_meta["db_table"] = db_table
attrs["_meta"] = _meta
attrs["fields"] = fields
del attrs["Meta"]
return super().__new__(cls, name, bases, attrs, **kwargs)
class BaseModel(metaclass=ModelMetaClass):
def __init__(self, *args, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
return super().__init__()
def save(self):
fields = []
values = []
for key, value in self.fields.items():
db_column = value.db_column
if not db_column:
db_column = key.lower()
fields.append(db_column)
value = getattr(self, key)
values.append(str(value))
sql = "insert {db_table}({fields}) values({values})".format(
db_table=self._meta["db_table"],
fields=",".join(fields),
values=",".join(values)
)
class User(BaseModel):
# 数据库表中的字段
name = CharField(db_column="name", max_length=10)
age = IntField(db_column="age", min_value=1, max_value=100)
# 表名称
class Meta:
db_table = "user"
if __name__ == "__main__":
user = User(name="ywh", age=28)
user.save()
网友评论