2018-10-23
RDB持久性以指定的时间间隔执行数据集的时间点快照
AOF持久性会记录服务器执行的每个写入操作,这些操作将在服务器启动时通过执行这些命令来还原数据集
redis还可以同时使用AOF和RDB。这种情况下,重启时优先使用AOF文件来还原数据集,因为通常AOF数据集比RDB更完整
也可以关闭持久化功能,让数据只在服务器运行时存在
RDB:
优点:
RDB是一个非常紧凑(compact)的文件,它保存了redis在某个时间点上的数据集。这种文件非常适用于进行备份
RDB非常适用于灾难恢复(disaster recovery):它只有一个文件,并且内容非常紧凑,可以(在加密后)将它传送到别的数据中心
RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是fork出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。
RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
缺点:
如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率, 但是, 因为RDB 文件需要保存整个数据集的状态, 所以它并不是一个轻松的操作。 因此你可能会至少 5 分钟才保存一次 RDB 文件。 在这种情况下, 一旦发生故障停机, 你就可能会丢失好几分钟的数据。
每次保存RDB的时候,Redis都要fork()出一个子进程,并由子进程来进行实际的持久化工作。在数据集比较庞大时,fork()可能会非常耗时,造成服务器在某某毫秒内停止处理客户端; 如果数据集非常巨大,并且CPU时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。 虽然AOF重写也需要进行fork(),但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。
AOF:
优点:
使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据(fsync会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对AOF文件的写入不需要进行seek,即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等),redis-check-aof工具也可以轻易地修复这种问题。
Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写:重写后的新AOF文件包含了恢复当前数据集所需的最小命令集合。整个重写操作是绝对安全的,因为Redis在创建新AOF文件的过程中,会继续将命令追加到现有的AOF文件里面,即使重写过程中发生停机,现有的AOF文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。
缺点:
对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。
网友评论