美文网首页
785. 最大权值和路径

785. 最大权值和路径

作者: 6默默Welsh | 来源:发表于2018-01-27 18:49 被阅读48次

    描述

    有一个机器人位于一个 m × n 个网格的右上角。
    机器人每一时刻只能向下或者向左移动一步。机器人试图达到网格的左下角。每个网格上有一个数字权值,机器人希望它走到左下角的路径权值和最大。
    问这个最大路径权值和是多少?

    注意事项

    输入一个n x m 的矩阵,保证 n <= 200,m <= 200。
    题目数据保证 0 <= i <= n-1 , 0 <= j <= m-1, nums[i][j] <= 100000。
    您在真实的面试中是否遇到过这个题? Yes
    样例
    给出
    [
    [1,2,3,4],
    [3,5,6,7],
    [9,10,1,2],
    [4,4,5,5]
    ],返回45。
    解释:

    从右上角出发,沿着[4,7,6,5,10,9,4]走到左下角。权值和为45。
    给出
    [
    [1,2,3],
    [4,5,6],
    [7,9,8]
    ]
    ,返回33。
    解释:
    从右上角出发,沿着[3,6,8,9,7]走到左下角,权值和为33。

    思路
    等同于 114. 不同的路径 这题

    代码

    public class Solution {
        /**
         * @param nums: the n x m grid
         * @return: the maximum weighted sum
         */
        public int maxWeight(int[][] nums) {
            if (nums == null || nums.length == 0 || nums[0].length == 0) {
                return 0;
            }
            
            int m = nums.length;
            int n = nums[0].length;
            int[][] sum = new int[m][n];
            
            sum[0][n - 1] = nums[0][n - 1];
            for (int i = 1; i < m; i++) {
                sum[i][n - 1] = nums[i][n - 1] + sum[i - 1][n - 1];
            }
            for (int i = n - 2; i >= 0; i--) {
                sum[0][i] = nums[0][i] + sum[0][i + 1];
            }
            
            for (int i = 1; i < m; i++) {
                for (int j = n - 2; j >= 0; j--) {
                    sum[i][j] = Math.max(sum[i - 1][j], sum[i][j + 1]) + nums[i][j];
                }
            }
            
            return sum[m - 1][0];
        }
    }
    

    相关文章

      网友评论

          本文标题:785. 最大权值和路径

          本文链接:https://www.haomeiwen.com/subject/ujqoaxtx.html