56. Merge Intervals

作者: 宋翰要长肉 | 来源:发表于2016-03-22 10:38 被阅读94次

    Algorithm

    • sort intervals according to start time in increasing order
    • traverse sorted intervals from first interval
      • if current interval is not the first interval and it overlaps the last interval in output list of intervals, merge these two intervals
        • update end time of last interval in output list of intervals to maximum of end times of the two intervals.
      • else add current interval into output list of intervals

    Complexity

    • time complexity: O(NlgN)
      • time complexity of sorting: O(NlgN)
    • space complexity: O(N)
      • space used for output list of intervals

    Code

    /**
     * Definition for an interval.
     * public class Interval {
     *     int start;
     *     int end;
     *     Interval() { start = 0; end = 0; }
     *     Interval(int s, int e) { start = s; end = e; }
     * }
     */
    public class Solution {
        public List<Interval> merge(List<Interval> intervals) {
            if (intervals == null || intervals.size() == 0) {
                return intervals;
            }
            Collections.sort(intervals, new Comparator<Interval>() {
                public int compare(Interval i1, Interval i2) {
                    return i1.start - i2.start;
                }            
            });
            int size = intervals.size();
            List<Interval> result = new ArrayList();
            result.add(intervals.get(0));
            for (int i = 1; i < size; i++) {
                Interval first = result.get(result.size() - 1);
                Interval second = intervals.get(i);
                 if (second.start > first.end) {
                    result.add(second);
                } else {
                    int newEnd = Math.max(first.end, second.end);
                    first.end = newEnd;
                }
            }
            return result;
        }
    }
    

    相关文章

      网友评论

        本文标题:56. Merge Intervals

        本文链接:https://www.haomeiwen.com/subject/ujxllttx.html