美文网首页Android面试相关
Android源码分析之Handler

Android源码分析之Handler

作者: 大大纸飞机 | 来源:发表于2018-07-19 16:52 被阅读23次

    Handler在Android开发中无处不在,它的使用方式想必大家都已经很熟练了,这里主要是分析它的原理。

    我们从ActivityThread#main方法开始,一步步理解Handler的机制。相关代码如下:

    /frameworks/base/core/java/android/app/ActivityThread.java

    public static void main(String[] args) {
        ...
    
        Looper.prepareMainLooper();
    
        ...
        Looper.loop();
    
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }
    

    ActivityThread初始化时就通过Looper建立了消息循环机制,先看下初始化部分,相关代码如下:

    /frameworks/base/core/java/android/os/Looper.java

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            // 确保主线程仅有一个Looper实例
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }
    
    private static void prepare(boolean quitAllowed) {
        // 确保线程仅对应一个Looper
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    

    这里通过ThreadLocal确保线程安全,且保证任何线程只能对应一个Looper实例。Looper实例化时,就确定了它所在的线程,同时创建了一个MessageQueue,代码如下:

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    

    MessageQueue稍后再研究,先看下Looper#loop的实现,代码如下:

    public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                // 等待消息,如果没有消息,可能会阻塞
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                ...
                try {
                    // 分发消息
                    msg.target.dispatchMessage(msg);
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
    
                ...
                msg.recycleUnchecked();
            }
        }
    

    这里建立了一个无限循环,不断地从MessageQueue中获取消息,然后进行分发,而我们使用的Handler并没有直接绑定在Looper中,而是绑定在msg.target变量里,这样做的好处是可以创建多个Handler。下面我们转到MessageQueue中,了解下MessageQueue#next方法,代码如下:

    /frameworks/base/core/java/android/os/MessageQueue.java

    Message next() {
        ...
    
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages; // 当前消息
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    // 这个消息是从其他线程发送过来的,不进行处理
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        // 没到msg分发时间
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                ...
            }
    
            ...
        }
    }
    

    这里通过for循环不断的获取消息,然后等待消息分发时间到之后将消息分发出去,这样消息循环就建立好了,接下来就应该通过Handler来发送消息和处理消息。Handler发送消息的方法有很多种,我们主要使用的有以下几种:

    • handler.sendMessage(msg)
    • handler.sendMessageDelayed(msg, delay)
    • handler.post(runnable)
    • handler.postDelayed(runnable, delay)

    除了以上几个,还有几个类似的方法,甚至还有一个Handler#sendMessageAtFrontOfQueue方法,可以在消息队列的最前面插入消息,不过这些方法的原理都是一致的,我们着重分析Handler#sendMessageHandler#post这两个方法。代码如下:

    /frameworks/base/core/java/android/os/Handler.java

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
    
    public final boolean post(Runnable r)
    {
        return  sendMessageDelayed(getPostMessage(r), 0);
    }
    

    可以看到,它们最终都是调用了Handler#sendMessageDelayed方法,只是通过post方式最终将Runnable转成了Message对象,具体的做法如下:

    private static Message getPostMessage(Runnable r) {
        // 从一个全局的对象池里获取Message对象,可以重复使用,这样就节省了new对象的开支
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
    

    也就是说这个Runnable实例就是作为Messagecallback的。继续看Handler#sendMessageDelayed方法,代码如下:

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        ...
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    

    最终,所有的方法都会调用到这个Handler#enqueueMessage方法,将Handler本身作为Messagetarget参数,然后将消息入队,最后在Looper中分发。接下来看下入队的操作,代码如下:

    /frameworks/base/core/java/android/os/MessageQueue.java

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // 新消息需要更早分发
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                // 根据时间顺序,将消息插入到合适的位置
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    通过以上代码我们发现,消息在入队时,就已经按照时间顺序排列好了,最后到了分发阶段,分发是通过Handler#dispatchMessage完成的,代码如下:

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    
    private static void handleCallback(Message message) {
        message.callback.run();
    }
    

    原来,如果在发送Message时设置了callback,就会由我们设置的Runnable来处理,否则,就通过Handler初始化时指定的Callback处理,如果都没有设置,就通过Handler#handleMessage方法来处理。这个mCallback是在构造函数中实例化的,我们看几个构造方法就明白了:

    public Handler() {
        this(null, false);
    }
    
    public Handler(Callback callback) {
        this(callback, false);
    }
    
    public Handler(Looper looper) {
        this(looper, null, false);
    }
    
    public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }
    
    public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
    

    至此,我们对Handler机制就有了清晰的认识,它并不复杂,但是功能十分强大,掌握它的原理以后使用时会更加顺手。

    上一篇:Android源码分析之Activity启动与View绘制流程(二)

    相关文章

      网友评论

        本文标题:Android源码分析之Handler

        本文链接:https://www.haomeiwen.com/subject/uljopftx.html