美文网首页
【算法】排序算法总结

【算法】排序算法总结

作者: 超级超级小天才 | 来源:发表于2019-08-24 23:53 被阅读0次

    这是算法类总结笔记的第 一 篇,同专题的其他文章可以移步:https://www.jianshu.com/nb/39628254

    排序算法的分类

    • 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
    • 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
    算法的分类

    算法复杂度

    算法的复杂度

    相关概念

    • 稳定:如果a原本在b前面,而a=b,排序之后 a 仍然在 b 的前面。
    • 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
    • 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
    • 空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

    排序算法

    插入排序

    插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    • 从第一个元素开始,该元素可以认为已经被排序;
    • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
    • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
    • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
    • 将新元素插入到该位置后;
    • 重复步骤2~5。

    冒泡排序

    冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

    • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
    • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
    • 针对所有的元素重复以上的步骤,除了最后一个;
    • 重复步骤1~3,直到排序完成。

    选择排序

    选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

    • 初始状态:无序区为R[1..n],有序区为空;
    • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
    • n-1趟结束,数组有序化了。

    希尔排序

    1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

    • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
    • 按增量序列个数k,对序列进行k 趟排序;
    • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
    • 缩小增量间隔的方法 grap=[grap/2]

    快速排序

    快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

    • 从数列中挑出一个元素,称为 “基准”(pivot);
    • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
    • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

    归并排序

    归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

    • 把长度为n的输入序列分成两个长度为n/2的子序列;
    • 对这两个子序列分别采用归并排序;
    • 将两个排序好的子序列合并成一个最终的排序序列。

    堆排序

    堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

    • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
    • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
    • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

    计数排序

    计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

    • 找出待排序的数组中最大和最小的元素;
    • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
    • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
    • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

    桶排序

    桶排序(Bucket sort)是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

    • 设置一个定量的数组当作空桶;
    • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
    • 对每个不是空的桶进行排序;
    • 从不是空的桶里把排好序的数据拼接起来。

    基数排序

    基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

    • 取得数组中的最大数,并取得位数
    • arr为原始数组,从最低位开始取每个位组成radix数组
    • 对radix进行计数排序(利用计数排序适用于小范围数的特点)

    参考https://www.cnblogs.com/onepixel/articles/7674659.html


    转载请注明出处,本文永久更新链接:https://blogs.littlegenius.xin/2019/08/24/【算法】一排序/

    相关文章

      网友评论

          本文标题:【算法】排序算法总结

          本文链接:https://www.haomeiwen.com/subject/uomcectx.html