美文网首页
Linux IO 多路复用 select&poll&epoll

Linux IO 多路复用 select&poll&epoll

作者: GOGOYAO | 来源:发表于2019-07-14 07:39 被阅读0次

    参考

    1. Linux IO模式及 select、poll、epoll详解

    文章内容主要摘抄自1. Linux IO模式及 select、poll、epoll详解

    2. 用户空间与内核空间,进程上下文与中断上下文[总结]

    1. 前言

    前一篇文章Linux IO模式
    介绍了 IO 的各种模式,本文重点介绍下 IO 多路复用。

    select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

    2. select

    int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
    

    select 函数监视的文件描述符分3类,分别是writefds、readfds、和exceptfds。调用后select函数会阻塞,直到有描述副就绪(有数据 可读、可写、或者有except),或者超时(timeout指定等待时间,如果立即返回设为null即可),函数返回。当select函数返回后,可以通过遍历fdset,来找到就绪的描述符。

    select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点。select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但是这样也会造成效率的降低(效率低是因为遍历是比较花时间的)。

    3. poll

    int poll (struct pollfd *fds, unsigned int nfds, int timeout);
    

    不同与select使用三个位图来表示三个fdset的方式,poll使用一个pollfd的指针实现。

    struct pollfd {
        int fd; /* file descriptor */
        short events; /* requested events to watch */
        short revents; /* returned events witnessed */
    };
    

    pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式。同时,pollfd并没有最大数量限制(但是数量过大后性能也是会下降)。和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符。

    从上面看,select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。

    4. epoll

    epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。

    4.1. 操作接口

    epoll操作过程需要三个接口,分别如下:

    int epoll_create(int size);//创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大
    int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
    int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
    

    4.1.1. int epoll_create(int size);

    创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大,这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值,\color{red}{参数size并不是限制了epoll所能监听的描述符最大个数,只是对内核初始分配内部数据结构的一个建议。}
    当创建好epoll句柄后,它就会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

    4.1.2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

    函数是对指定描述符fd执行op操作。

    • epfd:是epoll_create()的返回值。
    • op:表示op操作,用三个宏来表示:添加EPOLL_CTL_ADD,删除EPOLL_CTL_DEL,修改EPOLL_CTL_MOD。分别添加、删除和修改对fd的监听事件。
    • fd:是需要监听的fd(文件描述符)
    • epoll_event:是告诉内核需要监听什么事,struct epoll_event结构如下:
    struct epoll_event {
      __uint32_t events;  /* Epoll events */
      epoll_data_t data;  /* User data variable */
    };
    
    //events可以是以下几个宏的集合:
    EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
    EPOLLOUT:表示对应的文件描述符可以写;
    EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
    EPOLLERR:表示对应的文件描述符发生错误;
    EPOLLHUP:表示对应的文件描述符被挂断;
    EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
    EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
    

    4.1.3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

    等待epfd上的io事件,最多返回maxevents个事件。
    参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

    4.2. 工作模式

    epoll对文件描述符的操作有两种模式:LT(level trigger)ET(edge trigger)。LT模式是默认模式,LT模式与ET模式的区别如下:

    • \color{red}{LT模式}:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。
    • \color{red}{ET模式}:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。

    4.2.1 LT模式

    LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的。

    4.2.2. ET 模式

    ET(edge-triggered)是高速工作方式,只支持 \color{red}{no-block socket}。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)

    ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用 \color{red}{非阻塞套接口},以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。

    4.2.3. epoll工作 模式总结

    假如有这样一个例子:

    1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
    2. 这个时候从管道的另一端被写入了2KB的数据
    3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
    4. 然后我们读取了1KB的数据
    5. 调用epoll_wait(2)......

    LT 模式
    如果是LT模式,那么在第5步调用epoll_wait(2)之后,仍然能受到通知。

    ET模式
    如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍存在于文件输入缓冲区内的剩余数据。

    当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
    读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:

    while(rs){
      buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
      if(buflen < 0){
        // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
        // 在这里就当作是该次事件已处理处.
        if(errno == EAGAIN){
            break;
        }
        else{
            return;
        }
      }
      else if(buflen == 0){
         // 这里表示对端的socket已正常关闭.
      }
    
     if(buflen == sizeof(buf){
          rs = 1;   // 需要再次读取
     }
     else{
          rs = 0;
     }
    }
    

    关于 EAGAIN
    Linux环境下开发经常会碰到很多错误(设置errno),其中EAGAIN是其中比较常见的一个错误(比如用在非阻塞操作中)。
    从字面上来看,是提示再试一次。这个错误经常出现在当应用程序进行一些非阻塞(non-blocking)操作(对文件或socket)的时候。

    例如,以 O_NONBLOCK的标志打开文件/socket/FIFO,如果你连续做read操作而没有数据可读。此时程序不会阻塞起来等待数据准备就绪返回,read函数会返回一个错误EAGAIN,提示你的应用程序现在没有数据可读请稍后再试。
    又例如,当一个系统调用(比如fork)因为没有足够的资源(比如虚拟内存)而执行失败,返回EAGAIN提示其再调用一次(也许下次就能成功)。

    4.3. 代码示意

    下面是一段不完整的代码且格式不对,意在表述上面的过程,去掉了一些模板代码:

    #define IPADDRESS   "127.0.0.1"
    #define PORT        8787
    #define MAXSIZE     1024
    #define LISTENQ     5
    #define FDSIZE      1000
    #define EPOLLEVENTS 100
    
    listenfd = socket_bind(IPADDRESS,PORT);
    
    struct epoll_event events[EPOLLEVENTS];
    
    //创建一个描述符
    epollfd = epoll_create(FDSIZE);
    
    //添加监听描述符事件
    add_event(epollfd,listenfd,EPOLLIN);
    
    //循环等待
    for ( ; ; ){
        //该函数返回已经准备好的描述符事件数目
        ret = epoll_wait(epollfd,events,EPOLLEVENTS,-1);
        //处理接收到的连接
        handle_events(epollfd,events,ret,listenfd,buf);
    }
    
    //事件处理函数
    static void handle_events(int epollfd,struct epoll_event *events,int num,int listenfd,char *buf)
    {
         int i;
         int fd;
         //进行遍历;这里只要遍历已经准备好的io事件。num并不是当初epoll_create时的FDSIZE。
         for (i = 0;i < num;i++)
         {
             fd = events[i].data.fd;
            //根据描述符的类型和事件类型进行处理
             if ((fd == listenfd) &&(events[i].events & EPOLLIN))
                handle_accpet(epollfd,listenfd);
             else if (events[i].events & EPOLLIN)
                do_read(epollfd,fd,buf);
             else if (events[i].events & EPOLLOUT)
                do_write(epollfd,fd,buf);
         }
    }
    
    //添加事件
    static void add_event(int epollfd,int fd,int state){
        struct epoll_event ev;
        ev.events = state;
        ev.data.fd = fd;
        epoll_ctl(epollfd,EPOLL_CTL_ADD,fd,&ev);
    }
    
    //处理接收到的连接
    static void handle_accpet(int epollfd,int listenfd){
         int clifd;     
         struct sockaddr_in cliaddr;     
         socklen_t  cliaddrlen;     
         clifd = accept(listenfd,(struct sockaddr*)&cliaddr,&cliaddrlen);     
         if (clifd == -1)         
         perror("accpet error:");     
         else {         
             printf("accept a new client: %s:%d\n",inet_ntoa(cliaddr.sin_addr),cliaddr.sin_port);                       //添加一个客户描述符和事件         
             add_event(epollfd,clifd,EPOLLIN);     
         } 
    }
    
    //读处理
    static void do_read(int epollfd,int fd,char *buf){
        int nread;
        nread = read(fd,buf,MAXSIZE);
        if (nread == -1)     {         
            perror("read error:");         
            close(fd); //记住close fd        
            delete_event(epollfd,fd,EPOLLIN); //删除监听 
        }
        else if (nread == 0)     {         
            fprintf(stderr,"client close.\n");
            close(fd); //记住close fd       
            delete_event(epollfd,fd,EPOLLIN); //删除监听 
        }     
        else {         
            printf("read message is : %s",buf);        
            //修改描述符对应的事件,由读改为写         
            modify_event(epollfd,fd,EPOLLOUT);     
        } 
    }
    
    //写处理
    static void do_write(int epollfd,int fd,char *buf) {     
        int nwrite;     
        nwrite = write(fd,buf,strlen(buf));     
        if (nwrite == -1){         
            perror("write error:");        
            close(fd);   //记住close fd       
            delete_event(epollfd,fd,EPOLLOUT);  //删除监听    
        }else{
            modify_event(epollfd,fd,EPOLLIN); 
        }    
        memset(buf,0,MAXSIZE); 
    }
    
    //删除事件
    static void delete_event(int epollfd,int fd,int state) {
        struct epoll_event ev;
        ev.events = state;
        ev.data.fd = fd;
        epoll_ctl(epollfd,EPOLL_CTL_DEL,fd,&ev);
    }
    
    //修改事件
    static void modify_event(int epollfd,int fd,int state){     
        struct epoll_event ev;
        ev.events = state;
        ev.data.fd = fd;
        epoll_ctl(epollfd,EPOLL_CTL_MOD,fd,&ev);
    }
    
    //注:另外一端我就省了
    

    4.4. epoll 总结

    在 select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一 个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait() 时便得到通知。(此处去掉了遍历文件描述符,而是通过监听回调的的机制。这正是epoll的魅力所在。)

    5. select 和 epoll 的对比

    select缺点:
    最大并发数限制:使用32个整数的32位,即32*32=1024来标识fd,虽然可修改,但是有以下第二点的瓶颈;
    效率低:每次都会线性扫描整个fd_set,集合越大速度越慢;
    内核/用户空间内存拷贝问题。

    epoll的提升:
    本身没有最大并发连接的限制,仅受系统中进程能打开的最大文件数目限制;
    效率提升:只有活跃的socket才会主动的去调用callback函数;
    省去不必要的内存拷贝:epoll通过内核与用户空间mmap同一块内存实现。
    当然,以上的优缺点仅仅是特定场景下的情况:高并发,且任一时间只有少数socket是活跃的。

    如果在并发量低,socket都比较活跃的情况下,select就不见得比epoll慢了(就像我们常常说快排比插入排序快,但是在特定情况下这并不成立)。

    相关文章

      网友评论

          本文标题:Linux IO 多路复用 select&poll&epoll

          本文链接:https://www.haomeiwen.com/subject/uqtmkctx.html