zipkin
Zipkin是一个分布式追踪系统。它有助于收集解决微服务架构中延迟问题所需的时序数据。它管理这些数据的收集和查找。Zipkin的设计基于 Google Dapper论文。
架构概述
追踪器驻留在你的应用程序里,并且记录发生操作的时间和元数据。他们经常装配在库上,所以对用户来说是透明的。举个例子,一个装配过的 Web 服务器,会在接收请求和发送响应进行记录。收集的追踪数据叫做 Span(跨度)。
生产环境中的装配器应该是安全并且低负载的。为此,带内(in-band)只传输 ID,并且告诉接收器仍有一个追踪在处理。完成的跨度在带外(out-of-band)汇报给 Zipkin,类似于应用程序异步汇报指标一样。
举个例子,当追踪一个操作的时候,该操作对外发送了一个 HTTP 请求,那么,为了传输 ID 就会添加一些额外的头部信息。头部信息并不是用于发送像是操作明这样的详细信息的。
装配应用中用于向 Zipkin 发送数据的组件叫做 Reporter。Reporter 通过 Transport 发送追踪数据到 Zipkin 的 Collector,Collector 持久化数据到 Storage 中。之后,API 从 Storage 中查询数据提供给 UI。
下面的图表描述了整个流程:
image示例流程
正如概述中所提到的,标识符是在带内发送的,细节以带外形式发送到Zipkin。在这两种情况下,跟踪工具都负责创建有效的痕迹并正确渲染它们。例如,跟踪器可确保它在带内(下游)和带外(向Zipkin异步)发送的数据之间进行平衡。
以下是用户代码调用资源/ foo的http跟踪示例序列。这会导致一个跨度,在用户代码收到http响应后异步发送到Zipkin。
┌─────────────┐ ┌───────────────────────┐ ┌─────────────┐ ┌──────────────────┐
│ User Code │ │ Trace Instrumentation │ │ Http Client │ │ Zipkin Collector │
└─────────────┘ └───────────────────────┘ └─────────────┘ └──────────────────┘
│ │ │ │
┌─────────┐
│ ──┤GET /foo ├─▶ │ ────┐ │ │
└─────────┘ │ record tags
│ │ ◀───┘ │ │
────┐
│ │ │ add trace headers │ │
◀───┘
│ │ ────┐ │ │
│ record timestamp
│ │ ◀───┘ │ │
┌─────────────────┐
│ │ ──┤GET /foo ├─▶ │ │
│X-B3-TraceId: aa │ ────┐
│ │ │X-B3-SpanId: 6b │ │ │ │
└─────────────────┘ │ invoke
│ │ │ │ request │
│
│ │ │ │ │
┌────────┐ ◀───┘
│ │ ◀─────┤200 OK ├─────── │ │
────┐ └────────┘
│ │ │ record duration │ │
┌────────┐ ◀───┘
│ ◀──┤200 OK ├── │ │ │
└────────┘ ┌────────────────────────────────┐
│ │ ──┤ asynchronously report span ├────▶ │
│ │
│{ │
│ "traceId": "aa", │
│ "id": "6b", │
│ "name": "get", │
│ "timestamp": 1483945573944000,│
│ "duration": 386000, │
│ "annotations": [ │
│--snip-- │
└────────────────────────────────┘
跟踪检测报告异步跨越,以防止与跟踪系统相关的延迟或故障延迟或破坏用户代码。
Transport
装配库发送的跨度必须由装配的服务传输到 Collector。 有三种主要的传输类型:HTTP、Scribe 和 Kafka。更多信息查看跨度接收器。
共有四个组件构成了 Zipkin:
- collector
- storage
- search
- web UI
Zipkin Collector
一旦追踪数据抵达 Zipkin Collector 守护进程,Zipkin Collector 为了查询,会对其进行校验、存储和索引。
Storage
Zipkin 最初是构建在将数据存储在 Cassandra 中,因为 Cassandra 易跨站,支持灵活的 schema,并且在 Twitter 内部被大规模使用。然而,我们将这个组件做成了可插拔式的。在 Cassandra 之外,我们原生支持 ElasticSearch 和 MySQL。可作为第三方扩展提供给其它后端。
Zipkin 查询服务
一旦数据被存储索引,我们就需要一种方式提取它。查询守护进程提供了一个简单的 JSON API 查询和获取追踪数据。API 的主要消费者就是 Web UI。
Web UI
我们创建了一个用户图形界面为追踪数据提供了一个漂亮的视图。Web UI 提供了基于服务、时间和标记(annotation)查看追中数据的方法。注意:UI 没有内置的身份认证功能。
网友评论