美文网首页
OpenGL学习之路(7.0) 隧道案例分析与源码

OpenGL学习之路(7.0) 隧道案例分析与源码

作者: velue | 来源:发表于2019-03-04 22:57 被阅读0次

简单了解稍后需要用到的知识点

  • ⼀系列Mip贴图图像


    image.png

Mip贴图: 一种纹理技巧,提高渲染性能的时候,能够改善场景的显示质量,把贴图分成3份,主要原理是把一张纹理图片按照一定侧尺寸缩放,生成一些列的图片,按照图片离照相机的距离的远近,再决定使用哪张图片。

  • 设置贴图Mip

    //设置mip贴图基层               
    glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_BASE_LEVEL,0); 
    //设置mip贴图最大层 
    glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_BASE_LEVEL,0);

  • 经过Mip贴图的纹理过滤


    image.png

纹理采样

  • 采样分为两种
    • 一种是各向同性采样


      image.png
- 一种是异性采样
image.png

压缩纹理

  • 通⽤压缩纹理格式


    image.png
  • 判断压缩与选择压缩⽅式


    GLint comFlag;
    //判断纹理是否被成功压缩 
    glGetTexLevelParameteriv(GL_TEXTURE_2D,0,GL_TEXTURE_COMPRESSED,&comFlag);
    //根据选择的压缩纹理格式,选择最快、最优、⾃行选择的算法方式选择压缩格式。 
    glHint(GL_TEXTURE_COMPRESSION_HINT,GL_FASTEST);     
    glHint(GL_TEXTURE_COMPRESSION_HINT,GL_NICEST); 
    glHint(GL_TEXTURE_COMPRESSION_HINT,GL_DONT_CARE);

  • 加载压缩纹理方法

void glCompressedTexImage1D(GLenum target,GLint level,GLenum internalFormat,GLsizei
 width,GLint border,GLsizei imageSize,void *data);
 void glCompressedTexImage2D(GLenum target,GLint level,GLenum internalFormat,GLsizei
 width,GLint heigth,GLint border,GLsizei imageSize,void *data);
 void glCompressedTexImage3D(GLenum target,GLint level,GLenum internalFormat,GLsizei
 width,GLsizei heigth,GLsizei depth,GLint border,GLsizei imageSize,void *data);
/**
    target:`GL_TEXTURE_1D`、`GL_TEXTURE_2D`、`GL_TEXTURE_3D`。
    Level:指定所加载的mip贴图层次。⼀般我们都把这个参数设置为0。     
    internalformat:每个纹理单元中存储多少颜⾊成分。 width、height、
    depth参数:指加载纹理的宽度、高度、深度。==注意!==这些值必须是2的整数次方。(这是因为旧版本上的遗留下的一个要求。当然现在已经可以支持不是2的整数次方。但是开发者们还是习惯使用以2的整数次⽅去参数。)
    border参数:允许为纹理贴图指定一个边界宽度。 
    format、type、data参数:与我们在讲glDrawPixels 函数对于的参数相同
*/
  • glGetTexLevelParameter函数提取的压缩纹理格式


    image.png
  • GL_EXT_texture_compression_s3tc压缩格式


    image.png

效果

image.png

分析

  • 隧道分为四个面,分别用三种纹面绘制而成,左边与右边的纹理都是一样的,并且坐标位置也是相差无几,那么接下来先分析四面中的地面


    image.png

floorBatch.Begin(GL_TRIANGLE_STRIP, 28, 1); //Z表示深度,隧道的深度
//如果想隧道越深,把z的值改大就可以了
    for(z = 60.0f; z >= 0.0f; z -=10.0f)
    {
        floorBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        floorBatch.Vertex3f(-10.0f, -10.0f, z);
        floorBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        floorBatch.Vertex3f(10.0f, -10.0f, z);
        floorBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        floorBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);
        floorBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        floorBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);
    }
    floorBatch.End();

  • 可以从上图看到,这是一个梯形的长方形,由很多个三角形组成的,从上面代码可以看出GL_TRIANGLE_STRIP 三角形扇,它会连成一个三角形,所以两个三角形只需要四个坐标就可以了,
    分析坐标,z代表着深度,越靠近里面的三角形就越小,就不断地(z-10)一路延伸过去,通过for循环不断绘制小长方形形成一个阶梯的地面
  • 天花板的设置也是和地板一样的


    image.png

ceilingBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
    for(z = 60.0f; z >= 0.0f; z -=10.0f)
    {
        ceilingBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        ceilingBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);
        ceilingBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        ceilingBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);
        ceilingBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        ceilingBatch.Vertex3f(-10.0f, 10.0f, z);
        ceilingBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        ceilingBatch.Vertex3f(10.0f, 10.0f, z);
    }
    ceilingBatch.End();

  • 左边墙壁同上


    image.png
                
leftWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
for(z = 60.0f; z >= 0.0f; z -=10.0f)
{

    leftWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
    leftWallBatch.Vertex3f(-10.0f, -10.0f, z);

    leftWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
    leftWallBatch.Vertex3f(-10.0f, 10.0f, z);

    leftWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
    leftWallBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);

    leftWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);

    leftWallBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);
}
leftWallBatch.End();

  • 右面跟左面一样


    image.png

rightWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
   for(z = 60.0f; z >= 0.0f; z -=10.0f)
   {
       rightWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
       rightWallBatch.Vertex3f(10.0f, -10.0f, z);
       rightWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
       rightWallBatch.Vertex3f(10.0f, 10.0f, z);
       rightWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
       rightWallBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);
       rightWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
       rightWallBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);
   }
   rightWallBatch.End();

源码实例

  • 该源码基于OpenGL搭建的环境

#include "GLTools.h"
#include "GLShaderManager.h"
#include "GLFrustum.h"
#include "GLBatch.h"
#include "GLFrame.h"
#include "GLMatrixStack.h"
#include "GLGeometryTransform.h"

#ifdef __APPLE__
#include <glut/glut.h>
#else
#define FREEGLUT_STATIC
#include <GL/glut.h>
#endif

GLShaderManager     shaderManager;          //着色器管理器
GLMatrixStack       modelViewMatrix;        //模型视图矩阵
GLMatrixStack       projectionMatrix;       //投影矩阵
GLFrustum           viewFrustum;            //视景体
GLGeometryTransform transformPipeline;      //几何变换管线

//4个批次容器类
GLBatch             floorBatch;//地面
GLBatch             ceilingBatch;//天花板
GLBatch             leftWallBatch;//左墙面
GLBatch             rightWallBatch;//右墙面

//深度初始值,-65。
GLfloat             viewZ = -65.0f;

// 纹理标识符号
#define TEXTURE_BRICK   0 //墙面
#define TEXTURE_FLOOR   1 //地板
#define TEXTURE_CEILING 2 //纹理天花板
#define TEXTURE_COUNT   3 //纹理个数 什么3个纹理数?因为左边和右边是一样的
GLuint  textures[TEXTURE_COUNT];//纹理标记数组

//文件tag名字数组
const char *szTextureFiles[TEXTURE_COUNT] = { "brick.tga", "floor.tga", "ceiling.tga" };



//菜单栏选择
void ProcessMenu(int value)
{
    GLint iLoop;
    
    for (iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++) {
        /**绑定纹理
         参数1:GL_TEXTURE_2D
         参数2:需要绑定的纹理对象
         */
        glBindTexture(GL_TEXTURE_2D, textures[iLoop]);
        
        /**配置纹理参数 glTextParameteri
         参数1:纹理模式
         参数2:纹理参数
         参数3:特定纹理参数
         */
        switch (value) {
            case 0:
                //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_NEAREST(最邻近过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
                break;
            case 1:
                //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_LINEAR(线性过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
                break;
            case 2:
                //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_NEAREST_MIPMAP_NEAREST(选择最邻近的Mip层,并执行最邻近过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST);
                break;
            case 3:
                 //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_NEAREST_MIPMAP_LINEAR(在Mip层之间执行线性插补,并执行线性过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
                break;
            case 4:
                //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_NEAREST_MIPMAP_LINEAR(在Mip层之间执行线性插补,并执行最邻近过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST);
                break;
            case 5:
                //GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_LINEAR_MIPMAP_LINEAR(在Mip层之间执行线性插补,并执行线性过滤,又称为三线性过滤)
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
                break;
            case 6: //这里简单看一下就好了
                
               //设置各向异性过滤
                GLfloat fLargest;
                //获取各向异性过滤的最大数量
                glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &fLargest);
                //设置纹理参数
                glTexParameterf(GL_TEXTURE_2D, GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, fLargest);
                break;
            case 7:
                //设置各向同性过滤,数量为1.0表示各向同性过
                glTexParameterf(GL_TEXTURE_2D, GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
                break;
        }
    }

    //重绘制
    glutPostRedisplay();
}


//在这个函数里能够在渲染环境中进行任何需要的初始化,它这里的设置并初始化纹理对象
void SetupRC()
{
    GLbyte *pBytes;
    GLint iWidth, iHeight, iComponents;
    GLenum eFormat;
    GLint iLoop;
    
    //黑色背景
    glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
    
    //初始化着色器管理器
    shaderManager.InitializeStockShaders();
    
    //加载纹理
    /** 分配纹理对象 glGenTextures
     参数1:纹理对象的数量
     参数2:纹理对象标识数组
     */
    glGenTextures(TEXTURE_COUNT, textures);
    
    //for循环绑定、设置、载入纹理和生成Mip图层
    for (iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++) {
        /**绑定纹理对象 glBindTexture
         参数1:纹理模式,GL_TEXTURE_1D,GL_TEXTURE_2D,GL_TEXTURE_3D
         参数2:需要绑定的纹理对象
         */
        glBindTexture(GL_TEXTURE_2D, textures[iLoop]);
        
        /**加载tga文件
         参数1:纹理文件名称
         参数2:文件宽度变量地址
         参数3:文件高度变量地址
         参数4:文件组件变量地址
         参数5:文件格式变量地址
         返回值:pBytes,指向图像数据的指针
         */
        pBytes = gltReadTGABits(szTextureFiles[iLoop], &iWidth, &iHeight, &iComponents, &eFormat);
        
        
        //设置过滤器
        //GL_TEXTURE_MAG_FILTER(放大过滤器,GL_NEAREST(最邻近过滤)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
        //GL_TEXTURE_MIN_FILTER(缩小过滤器),GL_NEAREST(最邻近过滤)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
        //包装模式(环绕方式)
        //GL_TEXTURE_WRAP_S(s轴环绕),GL_CLAMP_TO_EDGE(环绕模式强制对范围之外的纹理坐标沿着合法的纹理单元的最后一行或一列进行采样)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        //GL_TEXTURE_WRAP_T(T轴环绕),GL_CLAMP_TO_EDGE(环绕模式强制对范围之外的纹理坐标沿着合法的纹理单元的最后一行或一列进行采样)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        
        //加载纹理
        glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight, 0, eFormat, GL_UNSIGNED_BYTE, pBytes);
        
        /**生成Mip图层 glGenerateMipmap
         参数1:纹理维度,GL_TEXTURE_1D,GL_TEXTURE_2D,GL_TEXTURE_2D
         */
        glGenerateMipmap(GL_TEXTURE_2D);
        
        //释放原始纹理数据,不在需要纹理原始数据了
        free(pBytes);
    }
    
    //建立几何图形
    GLfloat z;
    
    /**
     GLTools库中的容器类,GBatch,
     void GLBatch::Begin(GLenum primitive,GLuint nVerts,GLuint nTextureUnits = 0);
     参数1:图元枚举值,三角形扇形
     参数2:顶点数
     参数3:1组或者2组纹理坐标
     */
    floorBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
    
    //参考笔记坐标图的地板图形分析
    //Z表示深度,隧道的深度
    for (z = 60.0f; z >= 0.0f; z -= 10.0f) {
        // 纹理坐标,可以参照之前的OpenGL学习之路(6.0) 基础纹理的纹理坐标
        //注意:需要注意的是,它们绘制的顺序不能交叉改变
        floorBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        floorBatch.Vertex3f(-10.0f, -10.0f, z);
        
        floorBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        floorBatch.Vertex3f(10.0f, -10.0f, z);
        
        floorBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        floorBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);
        //vFrontRight
        floorBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        floorBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);
    }
    
    floorBatch.End();
    
    //参照之前的OpenGL学习之路(6.0) 基础纹理的纹理坐标
    ceilingBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
    for(z = 60.0f; z >= 0.0f; z -=10.0f)
    {
        ceilingBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        ceilingBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);
        
        ceilingBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        ceilingBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);
        
        ceilingBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        ceilingBatch.Vertex3f(-10.0f, 10.0f, z);
        
        ceilingBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        ceilingBatch.Vertex3f(10.0f, 10.0f, z);
    }
    ceilingBatch.End();
    
    //同上
    leftWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
    for(z = 60.0f; z >= 0.0f; z -=10.0f)
    {
        leftWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        leftWallBatch.Vertex3f(-10.0f, -10.0f, z);
        
        leftWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        leftWallBatch.Vertex3f(-10.0f, 10.0f, z);
        
        leftWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        leftWallBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);
        
        leftWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        leftWallBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);
    }
    leftWallBatch.End();
    
    //同上
    rightWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);
    for(z = 60.0f; z >= 0.0f; z -=10.0f)
    {
        rightWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);
        rightWallBatch.Vertex3f(10.0f, -10.0f, z);
        
        rightWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);
        rightWallBatch.Vertex3f(10.0f, 10.0f, z);
        
        rightWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);
        rightWallBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);
        
        rightWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);
        rightWallBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);
    }
    rightWallBatch.End();
}

//关闭渲染环境
void ShutdownRC(void)
{
   //删除纹理,有三个
    glDeleteTextures(TEXTURE_COUNT, textures);
}


//前后移动视口来对方向键作出响应
void SpecialKeys(int key, int x, int y)
{
    if (key == GLUT_KEY_UP) {
        //平移的是深度值,z值
        viewZ += 0.5f;
    }
    
    if (key == GLUT_KEY_DOWN) {
        viewZ -= 0.5f;
    }
    
    //更新窗口,即可回调到RenderScene函数里
    glutPostRedisplay();
}

//改变视景体和视口,在改变窗口大小或初始化窗口调用
void ChangeSize(int w, int h)
{
    
    //将视口设置大小
    glViewport(0, 0, w, h);
    
    //生成透视投影
    viewFrustum.SetPerspective(80.0f, float(w)/float(h), 1.0f, 120.f);
    //获取投影矩阵并加载矩阵
    projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());
    
    transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);
}

//调用,绘制场景
void RenderScene(void)
{
    // 清除颜色缓存区
    glClear(GL_COLOR_BUFFER_BIT);
    
    //模型视图压栈
    modelViewMatrix.PushMatrix(); //括号为空的时候,表示压栈当前线程
    //Z轴平移ViewZ 距离
    modelViewMatrix.Translate(0.0f, 0.0f, viewZ);
    
    //纹理替换着色器管理器
    /*
     参数1:GLT_SHADER_TEXTURE_REPLACE(着色器标签)
     参数2:模型视图投影矩阵
     参数3:纹理层
     */
    shaderManager.UseStockShader(GLT_SHADER_TEXTURE_REPLACE, transformPipeline.GetModelViewProjectionMatrix(),0);
    
    //绑定纹理
    /*
     参数1:纹理模式,GL_TEXTURE_1D、GL_TEXTURE_2D、GL_TEXTURE_3D
     参数2:需要绑定的纹理
     */
    glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_FLOOR]);
    floorBatch.Draw();
    
    glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_CEILING]);
    ceilingBatch.Draw();
    
    glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_BRICK]);
    leftWallBatch.Draw();
    rightWallBatch.Draw();
    
    modelViewMatrix.PopMatrix();
    
    glutSwapBuffers();
    

}



int main(int argc, char *argv[])
{
    gltSetWorkingDirectory(argv[0]);
    
    // 标准初始化
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
    glutInitWindowSize(800, 600);
    glutCreateWindow("Tunnel");
    glutReshapeFunc(ChangeSize);
    glutSpecialFunc(SpecialKeys);
    glutDisplayFunc(RenderScene);
    
    // 添加菜单入口,改变过滤器
    glutCreateMenu(ProcessMenu);
    glutAddMenuEntry("GL_NEAREST",0);
    glutAddMenuEntry("GL_LINEAR",1);
    glutAddMenuEntry("GL_NEAREST_MIPMAP_NEAREST",2);
    glutAddMenuEntry("GL_NEAREST_MIPMAP_LINEAR", 3);
    glutAddMenuEntry("GL_LINEAR_MIPMAP_NEAREST", 4);
    glutAddMenuEntry("GL_LINEAR_MIPMAP_LINEAR", 5);
    glutAddMenuEntry("Anisotropic Filter", 6);
    glutAddMenuEntry("Anisotropic Off", 7);
    
    
    glutAttachMenu(GLUT_RIGHT_BUTTON);
    
    GLenum err = glewInit();
    if (GLEW_OK != err) {
        fprintf(stderr, "GLEW Error: %s\n", glewGetErrorString(err));
        return 1;
    }
    
    
    // 启动循环,关闭纹理
    SetupRC();
    glutMainLoop();
    ShutdownRC();
    
    return 0;
}


源码地址

相关文章

  • OpenGL学习之路(7.0) 隧道案例分析与源码

    简单了解稍后需要用到的知识点 ⼀系列Mip贴图图像image.png Mip贴图: 一种纹理技巧,提高渲染性能的时...

  • OpenGL隧道案例分析

    1.效果图 此案例绘制了隧道的上下左右四个墙壁,并且加入了纹理,通过键盘上下键来控制观察者位置。效果图如下: 2.代码块

  • ijkplayer源码分析之audio与opensl es初始化

    ijkplayer源码分析之opengl与surface关联初始化 =======================...

  • ijkplayer源码分析之surface与opengl关联初始

    ijkplayer源码分析之opengl与surface关联初始化 =======================...

  • OpenGL隧道案例

    首先我们来看效果,通过点击鼠标的前后,我们就像走在一个一个隧道一样。 顶点、纹理设置 我们可以将隧道拆分成3个部分...

  • OpenGL 案例:隧道

    隧道整体的案例最终效果如下图所示 隧道的绘制过程,整体的流程如下图 主要涉及的函数 main函数、ChangeSi...

  • OpenGL案例 -- 隧道

    整体流程 SetupRC:初始化背景色、着色器,生成纹理、设置顶点和坐标 RenderScene:绘制场景,绑定纹...

  • OpenGL 纹理隧道案例

    隧道示例程序使用了和纹理有关的内容,并在视觉上显示了不同的过滤器和贴图模式。 该示例程序在启动时加载3个纹理用于对...

  • OpenGL--隧道案例

    效果图如下: 案例分析 设置纹理坐标使用批次类的MultiTexCoord2f,其中第一个参数是指图层,即纹理的l...

  • OpenGL 纹理案例-隧道

    在学习了纹理之后,我们尝试着用纹理来实现一个类似于下图这样的隧道效果,并且让他可以通过键盘的上下键可以来进行前进和...

网友评论

      本文标题:OpenGL学习之路(7.0) 隧道案例分析与源码

      本文链接:https://www.haomeiwen.com/subject/uwefkqtx.html