美文网首页
[数据结构]计算WPL 解题报告

[数据结构]计算WPL 解题报告

作者: vouv | 来源:发表于2017-03-26 14:28 被阅读0次

    Problem Description

    Huffman编码是通信系统中常用的一种不等长编码,它的特点是:能够使编码之后的电文长度最短。


    输入:

    第一行为要编码的符号数量n
    第二行~第n+1行为每个符号出现的频率

    输出:

    对应哈夫曼树的带权路径长度WPL


    测试输入

    5
    7
    5
    2
    4
    9
    

    测试输出

    WPL=60
    

    AcCode

    //
    //  main.cpp
    //  计算WPL
    //
    //  Created by jetviper on 2017/3/26.
    //  Copyright © 2017年 jetviper. All rights reserved.
    //
    
    #include <stdio.h>
    #define true 1
    #define false 0
    typedef  struct {
        unsigned int weight;
        unsigned int parent,leftChild,rightChild;
    }HTNode, *HuffmnTree;
    
    HTNode hufmanTree[100000];
    int main() {
        
        int num,m;
        scanf("%d",&num);
        m = 2 * num -1;
        for(int i=1;i<=num;i++){
            scanf("%d",&hufmanTree[i].weight);
            hufmanTree[i].parent = 0;
            hufmanTree[i].leftChild = 0;
            hufmanTree[i].rightChild = 0;
        }
        int s1,s2,max1,max2,iset1,iset2;
        
        for(int i=num+1;i<=m;i++){
            max1 =0,max2=0;
            iset1 =0,iset2=0;
            for(int j=1;j<i;j++){
                if(hufmanTree[j].parent == 0){
                    if(iset1 == 0){
                        max1 = hufmanTree[j].weight;
                        s1 = j;
                        iset1 = 1;
                        continue;
                    }
                    if(max1>hufmanTree[j].weight){
                        max1 = hufmanTree[j].weight;
                        s1 = j;
                        
                    }
                    
                }
            }
            for(int j =1;j<i;j++){
                if(j == s1)continue;
                if(hufmanTree[j].parent == 0) {
                    if (iset2 == 0) {
                        max2 = hufmanTree[j].weight;
                        s2 = j;
                        iset2 = 1;
                        continue;
                    }
                    if (max2 > hufmanTree[j].weight) {
                        max2 = hufmanTree[j].weight;
                        s2 = j;
                    }
                }
            }
            
            hufmanTree[s1].parent = i;
            hufmanTree[s2].parent = i;
            hufmanTree[i].leftChild = s1;
            hufmanTree[i].rightChild = s1;
            hufmanTree[i].weight = hufmanTree[s1].weight + hufmanTree[s2].weight;
        }
        
        int result =0;
        for(int i =1;i<=num;i++){
            
            if(hufmanTree[i].parent != 0){
                int temp= hufmanTree[i].parent;
                int count = 1;
                while(1){
                    if(hufmanTree[temp].parent!=0){
                        temp = hufmanTree[temp].parent;
                        count++;
                        continue;
                    }
                    else break;
                }
                result += count * hufmanTree[i].weight;
            }
        }
        
        printf("WPL=%d\n",result);
        
        
        return 0;
    }
    

    相关文章

      网友评论

          本文标题:[数据结构]计算WPL 解题报告

          本文链接:https://www.haomeiwen.com/subject/uwqkottx.html