美文网首页
随机变量变换后的互信息量(Mutual Information)

随机变量变换后的互信息量(Mutual Information)

作者: JamesPang_4841 | 来源:发表于2018-12-17 13:20 被阅读0次

    已知2组随机变量X,Y有分布函数P(X,Y),
    做变换将X-》K,Y-》L,其中
    P(K|X,Y)=P(K|X)
    P(L|X,Y)=P(L|Y)=S(L,Y)
    也就是说K只是X的变换,L只是Y的变换,

    求证互信息量:
    I(X,Y) >= I(K,L)

    证明如下:


    P(X,Y)=P
    P(K|X)=R(K,X)
    P(L|Y)=S(L,Y)
    联合分布P(X,Y,K,L)=R*S*P
    D=I(X,Y) - I(K,L) = 

    \int_{-\infty}^{\infty} RSP\ln [\frac{PP_{k}P_{l} }{P_{kl}P_{x}P_{y}} ] \mathrm{d}x{d}y{d}k{d}l

    根据引理:

    \therefore\begin{equation}\begin{aligned} D &\geq \int_{-\infty}^{\infty} RSP(1-\frac{P_{kl}P_{x}P_{y} }{PP_{k}P_{l}} ) \mathrm{d}x{d}y{d}k{d}l \\&=1- \int_{-\infty}^{\infty} RSP(\frac{P_{kl}P_{x}P_{y} }{PP_{k}P_{l}} ) \mathrm{d}x{d}y{d}k{d}l \\\end{aligned}\end{equation}

    因为\begin{equation}\begin{aligned}P_{k}=\int_{-\infty}^{\infty} RP_{x} \mathrm{d}x \\P_{l}=\int_{-\infty}^{\infty} SP_{y} \mathrm{d}y \\\end{aligned}\end{equation}

    所以
    \begin{equation}\begin{aligned}\int_{-\infty}^{\infty} RS(\frac{P_{kl}P_{x}P_{y} }{P_{k}P_{l}} ) \mathrm{d}x{d}y{d}k{d}l&=  \int_{-\infty}^{\infty} S(\frac{P_{kl}P_{y} }{P_{k}P_{l}} ) \mathrm{d}y{d}k{d}l \int_{-\infty}^{\infty}R P_{x} \mathrm{d}x\\&= \int_{-\infty}^{\infty} S(\frac{P_{kl}P_{y} }{P_{k}P_{l}} ) \mathrm{d}y{d}k{d}l P_{k}\\&=\int_{-\infty}^{\infty} (\frac{P_{kl} }{P_{k}P_{l}} ) \mathrm{d}k{d}l P_{k}\int_{-\infty}^{\infty}S P_{y}\mathrm{d}y \\&=\int_{-\infty}^{\infty} (\frac{P_{kl} }{P_{k}P_{l}} ) \mathrm{d}k{d}l P_{k} P_{l}\\&=\int_{-\infty}^{\infty} P_{kl} \mathrm{d}k{d}l =1\end{aligned}\end{equation}

    D>=0得证。

    推广到多维的Total Correlation也成立。

    相关文章

      网友评论

          本文标题:随机变量变换后的互信息量(Mutual Information)

          本文链接:https://www.haomeiwen.com/subject/uxbqkqtx.html