美文网首页
RSA非对称数字加密

RSA非对称数字加密

作者: kevinp | 来源:发表于2014-09-30 14:03 被阅读108次

    /*************************************************************************

    • Compilation: javac RSA.java
    • Execution: java RSA N
    • Generate an N-bit public and private RSA key and use to encrypt
    • and decrypt a random message.
    • % java RSA 50
    • public = 65537
    • private = 553699199426609
    • modulus = 825641896390631
    • message = 48194775244950
    • encrpyted = 321340212160104
    • decrypted = 48194775244950
    • Known bugs (not addressed for simplicity)

      • It could be the case that the message >= modulus. To avoid, use
    • a do-while loop to generate key until modulus happen to be exactly N bits.
      • It's possible that gcd(phi, publicKey) != 1 in which case
    • the key generation fails. This will only happen if phi is a
    • multiple of 65537. To avoid, use a do-while loop to generate
    • keys until the gcd is 1.

    *************************************************************************/

    import java.math.BigInteger;
    import java.security.SecureRandom;

    public class RSA {
    private final static BigInteger one = new BigInteger("1");
    private final static SecureRandom random = new SecureRandom();

    private BigInteger privateKey;
    private BigInteger publicKey;
    private BigInteger modulus;

    // generate an N-bit (roughly) public and private key
    RSA(int N) {
    BigInteger p = BigInteger.probablePrime(N/2, random);
    BigInteger q = BigInteger.probablePrime(N/2, random);
    BigInteger phi = (p.subtract(one)).multiply(q.subtract(one));

      modulus    = p.multiply(q);                                  
      publicKey  = new BigInteger("65537");     // common value in practice = 2^16 + 1
      privateKey = publicKey.modInverse(phi);
    

    }

    BigInteger encrypt(BigInteger message) {
    return message.modPow(publicKey, modulus);
    }

    BigInteger decrypt(BigInteger encrypted) {
    return encrypted.modPow(privateKey, modulus);
    }

    public String toString() {
    String s = "";
    s += "public = " + publicKey + "\n";
    s += "private = " + privateKey + "\n";
    s += "modulus = " + modulus;
    return s;
    }

    public static void main(String[] args) {
    int N = 50;
    RSA key = new RSA(N);
    System.out.println(key);

      // create random message, encrypt and decrypt
      //BigInteger message = new BigInteger(N-1, random);
      BigInteger message = new BigInteger("3080152");
      //// create message by converting string to integer
      // String s = "test";
      // byte[] bytes = s.getBytes();
      // BigInteger message = new BigInteger(s);
    
      BigInteger encrypt = key.encrypt(message);
      BigInteger decrypt = key.decrypt(encrypt);
      System.out.println("message   = " + message);
      System.out.println("encrpyted = " + encrypt);
      System.out.println("decrypted = " + decrypt);
    

    }
    }

    相关文章

      网友评论

          本文标题:RSA非对称数字加密

          本文链接:https://www.haomeiwen.com/subject/vbwutttx.html