美文网首页
集成学习入门 - 1 混合训练数据

集成学习入门 - 1 混合训练数据

作者: 薛东弗斯 | 来源:发表于2023-08-27 07:12 被阅读0次
    1. 决策树
    # 决策树
    from sklearn.datasets import load_iris
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    
    X,y = load_iris(return_X_y=True)
    train_X,test_X,train_Y,test_Y = train_test_split(X,y,test_size=0.2,random_state=123)
    tree = DecisionTreeClassifier()
    tree.fit(train_X,train_Y)
    print(tree.score(test_X,test_Y))
    # 0.9666666666666667
    
    1. 随机森林
    # 随机森林
    from sklearn.datasets import load_iris
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    
    X,y = load_iris(return_X_y=True)
    train_X,test_X,train_Y,test_Y = train_test_split(X,y,test_size=0.1,random_state=123)
    forest = RandomForestClassifier(n_estimators=8)
    forest=forest.fit(train_X,train_Y)
    # 1.0
    rf_output = forest.predict(test_X)
    print(rf_output)
    # [1 2 2 1 0 2 1 0 0 1 2 0 1 2 2]
    
    1. 不放回采样
    # 不替换采样(采样标记后不放回)
    from sklearn.utils import resample
    import numpy as np
    
    np.random.seed(123)
    data = [1,2,3,4,5,6,7,8,9]
    num_divisions = 2    # 分成2个筒
    list_of_data_divisions = []
    for x in range(0, num_divisions):
        sample = resample(data,replace=False,n_samples=5)
        list_of_data_divisions.append(sample)
    print('Sample',list_of_data_divisions)
    # Sample [[8, 1, 6, 7, 4], [4, 6, 5, 3, 8]]
    
    1. 放回采样
    # 替换采样(采样标记后,再放回,继续采样)
    from sklearn.utils import resample
    import numpy as np
    
    np.random.seed(123)
    data = [1,2,3,4,5,6,7,8,9]
    num_divisions = 3    # 分成3个筒
    list_of_data_divisions = []
    for x in range(0, num_divisions):
        sample = resample(data,replace=False,n_samples=4)  # 每个桶4个数据
        list_of_data_divisions.append(sample)
    print('Sample',list_of_data_divisions)
    # Sample [[8, 1, 6, 7], [4, 6, 5, 3], [3, 2, 9, 8]]
    

    相关文章

      网友评论

          本文标题:集成学习入门 - 1 混合训练数据

          本文链接:https://www.haomeiwen.com/subject/vcaimdtx.html