美文网首页http专栏
Okhttp3主要源码分析

Okhttp3主要源码分析

作者: 城市里永远的学习者 | 来源:发表于2018-11-30 15:12 被阅读0次

    在OkHttp3中,其灵活性很大程度上体现在可以 intercept 其任意一个环节,而这个优势便是okhttp3整个请求响应架构体系的精髓所在,先放出一张主框架请求流程图,接着再分析源码。

    image.png
    String url = "http://wwww.baidu.com";
    OkHttpClient okHttpClient = new OkHttpClient();
    final Request request = new Request.Builder()
            .url(url)
            .build();
    Call call = okHttpClient.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {
            Log.d(TAG, "onFailure: ");
        }
    
        @Override
        public void onResponse(Call call, Response response) throws IOException {
            Log.d(TAG, "onResponse: " + response.body().string());
        }
    });
    
    

    这大概是一个最简单的一个例子了,在new OkHttpClient()内部使用构造器模式初始化了一些配置信息:支持协议、任务分发器(其内部包含一个线程池,执行异步请求)、连接池(其内部包含一个线程池,维护connection)、连接/读/写超时时长等信息。

    public Builder() {
        dispatcher = new Dispatcher(); //任务调度器
        protocols = DEFAULT_PROTOCOLS; //支持的协议
        connectionSpecs = DEFAULT_CONNECTION_SPECS;
        eventListenerFactory = EventListener.factory(EventListener.NONE);
        proxySelector = ProxySelector.getDefault();
        cookieJar = CookieJar.NO_COOKIES;
        socketFactory = SocketFactory.getDefault();
        hostnameVerifier = OkHostnameVerifier.INSTANCE;
        certificatePinner = CertificatePinner.DEFAULT;
        proxyAuthenticator = Authenticator.NONE;
        authenticator = Authenticator.NONE;
        connectionPool = new ConnectionPool(); //连接池
        dns = Dns.SYSTEM;
        followSslRedirects = true;
        followRedirects = true;
        retryOnConnectionFailure = true;
        connectTimeout = 10_000;//超时时间
        readTimeout = 10_000;
        writeTimeout = 10_000;
        pingInterval = 0;
    }
    
    

    第一行创建了一个Dispatcher任务调度器,它定义了三个双向任务队列,两个异步队列:准备执行的请求队列 readyAsyncCalls、正在运行的请求队列 runningAsyncCalls;一个正在运行的同步请求队列 runningSyncCalls

    public final class Dispatcher {
        private int maxRequests = 64; //最大请求数量
        private int maxRequestsPerHost = 5; //每台主机最大的请求数量
        private @Nullable Runnable idleCallback;
    
        /** Executes calls. Created lazily. */
        private @Nullable ExecutorService executorService; //线程池
    
        /** Ready async calls in the order they'll be run. */
        private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
    
        /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
        private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
    
        /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
        private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
    
        /** 这个线程池没有核心线程,线程数量没有限制,空闲60s就会回收*/
        public synchronized ExecutorService executorService() {
            if (executorService == null) {
              executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
                  new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
            }
            return executorService;
        }
    }  
    
    

    另外还有一个线程池 executorService ,这个线程池跟Android中的CachedThreadPool非常类似,这种类型的线程池,适用于大量的耗时较短的异步任务。下一篇文章 将对OkHttp框架中的线程池做一个总结。

    接下来接着看Request的构造,这个例子Request比较简单,指定了请求方式 GET 和请求 url

      public static class Builder {
        HttpUrl url;
        String method;
        Headers.Builder headers;
        RequestBody body;
        Object tag;
    
        public Builder() {
          this.method = "GET";
          this.headers = new Headers.Builder();
        }
    
        public Builder url(HttpUrl url) {
          if (url == null) throw new NullPointerException("url == null");
          this.url = url;
          return this;
        }
        public Request build() {
            if (url == null) throw new IllegalStateException("url == null");
            return new Request(this);
        }
        ...
    }    
    
    

    紧接着通过 OkHttpClientRequest 构造一个 Call对象,它的实现是RealCall

    public Call newCall(Request request) {
        return RealCall.newRealCall(this, request, false /* for web socket */);
    }
    
    static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket){
        // Safely publish the Call instance to the EventListener.
        RealCall call = new RealCall(client, originalRequest, forWebSocket);
        call.eventListener = client.eventListenerFactory().create(call);
        return call;
    }
    
    private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        this.client = client;
        this.originalRequest = originalRequest;
        this.forWebSocket = forWebSocket;
        this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
    }
    
    

    可以看到在 RealCall 的构造方法中创建了一个RetryAndFollowUpInterceptor,用于处理请求错误和重定向等,这是 Okhttp 框架的精髓 interceptor chain 中的一环,默认情况下也是第一个拦截器,除非调用 OkHttpClient.Builder#addInterceptor(Interceptor) 来添加全局的拦截器。关于拦截器链的顺序参见 RealCall#getResponseWithInterceptorChain() 方法。

    RealCall#enqueue(Callback)

    public void enqueue(Callback responseCallback) {
        synchronized (this) {
            //每个请求只能之执行一次
            if (executed) throw new IllegalStateException("Already Executed");
            executed = true;
        }
        captureCallStackTrace();
        eventListener.callStart(this);
        client.dispatcher().enqueue(new AsyncCall(responseCallback));
    }
    
    

    可以看到,一个 Call 只能执行一次,否则会抛异常,这里创建了一个 AsyncCall 并将Callback传入,接着再交给任务分发器 Dispatcher 来进一步处理。

    synchronized void enqueue(AsyncCall call) {
        //正在执行的任务数量小于最大值(64),并且此任务所属主机的正在执行任务小于最大值(5)
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
            runningAsyncCalls.add(call);
            executorService().execute(call);
        } else {
            readyAsyncCalls.add(call);
        }
    }
    
    

    Dispatcher#enqueue()方法的策略可以看出,对于请求的入队做了一些限制,若正在执行的请求数量小于最大值(默认64),并且此请求所属主机的正在执行任务小于最大值(默认5),就加入正在运行的队列并通过线程池来执行该任务,否则加入准备执行队列中。

    • 流程图

    现在回头看看 AsyncCall ,它继承自 NamedRunnable,而 NamedRunnable实现了 Runnable 接口,它的作用有2个:
    ①采用模板方法的设计模式,让子类将具体的操作放在 execute()方法中;
    ②给线程指定一个名字,比如传入模块名称,方便监控线程的活动状态;

    public abstract class NamedRunnable implements Runnable {
      protected final String name;
    
      public NamedRunnable(String format, Object... args) {
        this.name = Util.format(format, args);
      }
    
      @Override public final void run() {
        String oldName = Thread.currentThread().getName();
        Thread.currentThread().setName(name);
        try {
          //采用模板方法让子类将具体的操作放到此execute()方法
          execute();
        } finally {
          Thread.currentThread().setName(oldName);
        }
      }
    
      protected abstract void execute();
    }
    
    
    final class AsyncCall extends NamedRunnable {
        //省略...
        @Override protected void execute() {
          boolean signalledCallback = false;
          try {
            //调用 getResponseWithInterceptorChain()获得响应内容
            Response response = getResponseWithInterceptorChain(); //①
            if (retryAndFollowUpInterceptor.isCanceled()) {
              //这个标记为主要是避免异常时2次回调
              signalledCallback = true;
              //回调Callback告知失败
              responseCallback.onFailure(RealCall.this, new IOException("Canceled")); 
            } else {
              signalledCallback = true;
              //回调Callback,将响应内容传回去
              responseCallback.onResponse(RealCall.this, response);
            }
          } catch (IOException e) {
            if (signalledCallback) {
              // Do not signal the callback twice!
              Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
            } else {
              eventListener.callFailed(RealCall.this, e);
              responseCallback.onFailure(RealCall.this, e);
            }
          } finally {
            //不管请求成功与否,都进行finished()操作
            client.dispatcher().finished(this);//②
          }
        }
    }
    
    

    先看注释②的行finally块中执行的 client.dispatcher().finished(this)

    void finished(AsyncCall call) {
        finished(runningAsyncCalls, call, true);
    }
    
    private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
        int runningCallsCount;
        Runnable idleCallback;
        synchronized (this) {
            //从正在执行的队列中将其移除
            if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
            if (promoteCalls) promoteCalls(); //推动下一个任务的执行
            runningCallsCount = runningCallsCount();//同步+异步的正在执行任务数量
            idleCallback = this.idleCallback;
        }
        //如果没有正在执行的任务,且idleCallback不为null,则回调通知空闲了
        if (runningCallsCount == 0 && idleCallback != null) {
            idleCallback.run();
        }
    }
    
    

    其中promoteCalls()为推动下一个任务执行,其实它做的也很简单,就是在条件满足的情况下,将 readyAsyncCalls 中的任务移动到 runningAsyncCalls中,并交给线程池来执行,以下是它的实现。

    private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
        if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
    
        //若条件允许,将readyAsyncCalls中的任务移动到runningAsyncCalls中,并交给线程池执行
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
          //当runningAsyncCalls满了,直接退出迭代
          if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
        }
    }
    
    

    接下来就回到注释①处的响应内容的获取 getResponseWithInterceptorChain()

    Response getResponseWithInterceptorChain() throws IOException {
        // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>(); //这是一个List,是有序的
        interceptors.addAll(client.interceptors());//首先添加的是用户添加的全局拦截器
        interceptors.add(retryAndFollowUpInterceptor); //错误、重定向拦截器
       //桥接拦截器,桥接应用层与网络层,添加必要的头、
        interceptors.add(new BridgeInterceptor(client.cookieJar())); 
        //缓存处理,Last-Modified、ETag、DiskLruCache等
        interceptors.add(new CacheInterceptor(client.internalCache())); 
        //连接拦截器
        interceptors.add(new ConnectInterceptor(client));
        //从这就知道,通过okHttpClient.Builder#addNetworkInterceptor()传进来的拦截器只对非网页的请求生效
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        //真正访问服务器的拦截器
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
            originalRequest, this, eventListener, client.connectTimeoutMillis(),
            client.readTimeoutMillis(), client.writeTimeoutMillis());
    
        return chain.proceed(originalRequest);
    }
    
    

    可以看这块重点就是 interceptors 这个集合,首先将前面的 client.interceptors() 全部加入其中,还有在创建 RealCall时的 retryAndFollowUpInterceptor加入其中,接着还创建并添加了BridgeInterceptor、CacheInterceptor、ConnectInterceptor、CallServerInterceptor,最后通过RealInterceptorChain#proceed(Request)来执行整个 interceptor chain,可见把这个拦截器链搞清楚,整体流程也就明朗了。

    RealInterceptorChain#proceed()

    public Response proceed(Request request) throws IOException {
        return proceed(request, streamAllocation, httpCodec, connection);
    }
    
    public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
        //省略异常处理...
    
        // Call the next interceptor in the chain.
        RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
            connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
            writeTimeout);
        Interceptor interceptor = interceptors.get(index);
        Response response = interceptor.intercept(next);
    
        //省略异常处理...
        return response;
    }
    
    

    从这段实现可以看出,是按照添加到 interceptors 集合的顺序,逐个往下调用拦截器的intercept()方法,所以在前面的拦截器会先被调用。这个例子中自然就是 RetryAndFollowUpInterceptor 了。

    public Response intercept(Chain chain) throws IOException {
        Request request = chain.request();
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Call call = realChain.call();
        EventListener eventListener = realChain.eventListener();
        //创建一个StreamAllocation
        StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
            createAddress(request.url()), call, eventListener, callStackTrace);
        this.streamAllocation = streamAllocation;
    
        //统计重定向次数,不能大于20
        int followUpCount = 0; 
        Response priorResponse = null;
        while (true) {
          if (canceled) {
            streamAllocation.release();
            throw new IOException("Canceled");
          }
    
          Response response;
          boolean releaseConnection = true;
          try {
            //调用下一个interceptor的来获得响应内容
            response = realChain.proceed(request, streamAllocation, null, null);
            releaseConnection = false;
          } catch (RouteException e) {
            // The attempt to connect via a route failed. The request will not have been sent.
            if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
              throw e.getLastConnectException();
            }
            releaseConnection = false;
            continue;
          } catch (IOException e) {
            // An attempt to communicate with a server failed. The request may have been sent.
            boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
            if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
            releaseConnection = false;
            continue;
          } finally {
            // We're throwing an unchecked exception. Release any resources.
            if (releaseConnection) {
              streamAllocation.streamFailed(null);
              streamAllocation.release();
            }
          }
    
          // Attach the prior response if it exists. Such responses never have a body.
          if (priorResponse != null) {
            response = response.newBuilder()
                .priorResponse(priorResponse.newBuilder()
                        .body(null)
                        .build())
                .build();
          }
    
         //重定向处理    
          Request followUp = followUpRequest(response, streamAllocation.route());
    
          if (followUp == null) {
            if (!forWebSocket) {
              streamAllocation.release();
            }
            return response;
          }
    
          closeQuietly(response.body());
    
          if (++followUpCount > MAX_FOLLOW_UPS) {
            streamAllocation.release();
            throw new ProtocolException("Too many follow-up requests: " + followUpCount);
          }
    
          if (followUp.body() instanceof UnrepeatableRequestBody) {
            streamAllocation.release();
            throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
          }
    
          if (!sameConnection(response, followUp.url())) {
            streamAllocation.release();
            streamAllocation = new StreamAllocation(client.connectionPool(),
                createAddress(followUp.url()), call, eventListener, callStackTrace);
            this.streamAllocation = streamAllocation;
          } else if (streamAllocation.codec() != null) {
            throw new IllegalStateException("Closing the body of " + response
                + " didn't close its backing stream. Bad interceptor?");
          }
    
          request = followUp;
          priorResponse = response;
        }
    }
    
    

    这个拦截器就如同它的名字retry and followUp,主要负责错误处理和重定向等问题,比如路由错误、IO异常等。

    接下来就到了BridgeInterceptor#intercept(),在这个拦截器中,添加了必要请求头信息,gzip处理等。

    public Response intercept(Chain chain) throws IOException {
        Request userRequest = chain.request();
        Request.Builder requestBuilder = userRequest.newBuilder();
    
        //从这开始给请求添加了一些请求头信息
        RequestBody body = userRequest.body();
        if (body != null) {
          MediaType contentType = body.contentType();
          if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
          }
    
          long contentLength = body.contentLength();
          if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
          } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
          }
        }
    
        if (userRequest.header("Host") == null) {
          requestBuilder.header("Host", hostHeader(userRequest.url(), false));
        }
    
        if (userRequest.header("Connection") == null) {
          requestBuilder.header("Connection", "Keep-Alive");
        }
    
        // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
        // the transfer stream.
        boolean transparentGzip = false;
        if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
          transparentGzip = true;
          requestBuilder.header("Accept-Encoding", "gzip");
        }
    
        List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
        if (!cookies.isEmpty()) {
          requestBuilder.header("Cookie", cookieHeader(cookies));
        }
    
        if (userRequest.header("User-Agent") == null) {
          requestBuilder.header("User-Agent", Version.userAgent());
        }
    
        Response networkResponse = chain.proceed(requestBuilder.build());
    
        HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
        Response.Builder responseBuilder = networkResponse.newBuilder()
            .request(userRequest);
    
        if (transparentGzip
            && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
            && HttpHeaders.hasBody(networkResponse)) {
          GzipSource responseBody = new GzipSource(networkResponse.body().source());
          Headers strippedHeaders = networkResponse.headers().newBuilder()
              .removeAll("Content-Encoding")
              .removeAll("Content-Length")
              .build();
          responseBuilder.headers(strippedHeaders);
          String contentType = networkResponse.header("Content-Type");
          responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
        }
    
        return responseBuilder.build();
    }
    
    

    这个拦截器处理请求信息、cookie、gzip等,接着往下是 CacheInterceptor

    public Response intercept(Chain chain) throws IOException {
        Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;
    
        long now = System.currentTimeMillis();
    
        CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
        Request networkRequest = strategy.networkRequest;
        Response cacheResponse = strategy.cacheResponse;
    
        if (cache != null) {
          cache.trackResponse(strategy);
        }
    
        if (cacheCandidate != null && cacheResponse == null) {
          closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
        }
    
        // If we're forbidden from using the network and the cache is insufficient, fail.
        if (networkRequest == null && cacheResponse == null) {
          return new Response.Builder()
              .request(chain.request())
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(Util.EMPTY_RESPONSE)
              .sentRequestAtMillis(-1L)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();
        }
    
        // If we don't need the network, we're done.
        if (networkRequest == null) {
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
    
        Response networkResponse = null;
        try {
          //调用下一个拦截器进行网络请求    
          networkResponse = chain.proceed(networkRequest);
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
          if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
    
        // If we have a cache response too, then we're doing a conditional get.
        if (cacheResponse != null) {
          if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
          } else {
            closeQuietly(cacheResponse.body());
          }
        }
    
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (cache != null) {
          if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
          }
    
          if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
              cache.remove(networkRequest);
            } catch (IOException ignored) {
              // The cache cannot be written.
            }
          }
        }
    
        return response;
    }
    
    

    这个拦截器主要工作是做做缓存处理,如果有有缓存并且缓存可用,那就使用缓存,否则进行调用下一个拦截器 ConnectionInterceptor 进行网络请求,并将响应内容缓存。

    public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Request request = realChain.request();
        StreamAllocation streamAllocation = realChain.streamAllocation();
    
        // We need the network to satisfy this request. Possibly for validating a conditional GET.
        boolean doExtensiveHealthChecks = !request.method().equals("GET");
        HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
        RealConnection connection = streamAllocation.connection();
    
        return realChain.proceed(request, streamAllocation, httpCodec, connection);
    }
    
    

    这个拦截器主要是打开一个到目标服务器的 connection 并调用下一个拦截器 CallServerInterceptor,这是拦截器链最后一个拦截器,它向服务器发起真正的网络请求。

    public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        HttpCodec httpCodec = realChain.httpStream();
        StreamAllocation streamAllocation = realChain.streamAllocation();
        RealConnection connection = (RealConnection) realChain.connection();
        Request request = realChain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
    
        realChain.eventListener().requestHeadersStart(realChain.call());
        httpCodec.writeRequestHeaders(request);
        realChain.eventListener().requestHeadersEnd(realChain.call(), request);
    
        Response.Builder responseBuilder = null;
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
          // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
          // Continue" response before transmitting the request body. If we don't get that, return
          // what we did get (such as a 4xx response) without ever transmitting the request body.
          if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            realChain.eventListener().responseHeadersStart(realChain.call());
            responseBuilder = httpCodec.readResponseHeaders(true);
          }
    
          if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            realChain.eventListener().requestBodyStart(realChain.call());
            long contentLength = request.body().contentLength();
            CountingSink requestBodyOut =
                new CountingSink(httpCodec.createRequestBody(request, contentLength));
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
    
            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
            realChain.eventListener()
                .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
          } else if (!connection.isMultiplexed()) {
            // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
            // from being reused. Otherwise we're still obligated to transmit the request body to
            // leave the connection in a consistent state.
            streamAllocation.noNewStreams();
          }
        }
    
        httpCodec.finishRequest();
    
        if (responseBuilder == null) {
          realChain.eventListener().responseHeadersStart(realChain.call());
          responseBuilder = httpCodec.readResponseHeaders(false);
        }
    
        Response response = responseBuilder
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        int code = response.code();
        if (code == 100) {
          // server sent a 100-continue even though we did not request one.
          // try again to read the actual response
          responseBuilder = httpCodec.readResponseHeaders(false);
    
          response = responseBuilder
                  .request(request)
                  .handshake(streamAllocation.connection().handshake())
                  .sentRequestAtMillis(sentRequestMillis)
                  .receivedResponseAtMillis(System.currentTimeMillis())
                  .build();
    
          code = response.code();
        }
    
        realChain.eventListener()
                .responseHeadersEnd(realChain.call(), response);
    
        if (forWebSocket && code == 101) {
          // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
          response = response.newBuilder()
              .body(Util.EMPTY_RESPONSE)
              .build();
        } else {
          response = response.newBuilder()
              .body(httpCodec.openResponseBody(response))
              .build();
        }
    
        if ("close".equalsIgnoreCase(response.request().header("Connection"))
            || "close".equalsIgnoreCase(response.header("Connection"))) {
          streamAllocation.noNewStreams();
        }
    
        if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
          throw new ProtocolException(
              "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
        }
    
        return response;
     }
    
    

    从上面的请求流程图可以看出,OkHttp的拦截器链可谓是其整个框架的精髓,用户可传入的 interceptor 分为两类:
    ①一类是全局的 interceptor,该类 interceptor 在整个拦截器链中最早被调用,通过 OkHttpClient.Builder#addInterceptor(Interceptor) 传入;
    ②另外一类是非网页请求的 interceptor ,这类拦截器只会在非网页请求中被调用,并且是在组装完请求之后,真正发起网络请求前被调用,所有的 interceptor 被保存在 List<Interceptor> interceptors 集合中,按照添加顺序来逐个调用,具体可参考 RealCall#getResponseWithInterceptorChain() 方法。通过 OkHttpClient.Builder#addNetworkInterceptor(Interceptor) 传入;

    image.png

    相关文章

      网友评论

        本文标题:Okhttp3主要源码分析

        本文链接:https://www.haomeiwen.com/subject/vcshcqtx.html