Given a linked list, determine if it has a cycle in it.
To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the second node.
Example 2:
Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the first node.
Example 3:
Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
Follow up:
Can you solve it using O(1) (i.e. constant) memory?
Solution
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public boolean hasCycle(ListNode head) {
ListNode first=head;
ListNode second=head;
boolean flag=true;
while(first!=null&&second!=null&&second.next!=null){
if(!flag&&first.val==second.val){
return true;
}
first=first.next;
second=second.next.next;
flag=false;
}
return false;
}
}
时间:O(n)
空间:O(1)
我蠢了,写得太复杂了,我执着于两个指针的开始位置,其实只要是一快一慢肯定能相遇。每轮第一个走一步,第二个走两步,只要没遇见null就可能存在环,两个指针指向的值相等就确认有环了。哈希表也可以做,就是空间上会变为O(n)
网友评论