美文网首页
Pandas中索引的常见属性

Pandas中索引的常见属性

作者: 皮皮大 | 来源:发表于2022-04-16 00:14 被阅读0次

    公众号:尤而小屋
    作者:Peter
    编辑:Peter

    大家好,我是Peter~

    本文记录的是Pandas中10种单层索引的常用属性,文末有汇总的常见属性,建议收藏!

    [图片上传失败...(image-1b2eef-1650039172740)]

    10种索引

    快速回顾Pandas中10种单层索引的创建:

    pd.Index

    In [1]:

    import pandas as pd
    import numpy as np
    

    In [2]:

    # 指定类型和名称
    
    s1 = pd.Index([1,2,3,4,5,6,7], 
             dtype="int",
             name="Peter")
    
    s1
    

    Out[2]:

    Int64Index([1, 2, 3, 4, 5, 6, 7], dtype='int64', name='Peter')
    

    pd.RangeIndex

    指定整数范围内的不可变索引

    In [3]:

    s2 = pd.RangeIndex(0,20,2)
    s2
    

    Out[3]:

    RangeIndex(start=0, stop=20, step=2)
    

    pd.Int64Index

    64位整数型索引

    In [4]:

    s3 = pd.Int64Index([1,2,3,4,5,6,7,8],name="Peter")
    s3
    

    Out[4]:

    Int64Index([1, 2, 3, 4, 5, 6, 7, 8], dtype='int64', name='Peter')
    

    pd.UInt64Index

    无符号整数索引

    In [5]:

    s4 = pd.UInt64Index([1, 2.0, 3, 4],name="Tom")
    s4
    

    Out[5]:

    UInt64Index([1, 2, 3, 4], dtype='uint64', name='Tom')
    

    pd.Float64Index

    64位浮点型的索引

    In [6]:

    s5 = pd.Float64Index([1.5, 2.4, 3.7, 4.9],name="peter")
    s5
    

    Out[6]:

    Float64Index([1.5, 2.4, 3.7, 4.9], dtype='float64', name='peter')
    

    pd.IntervalIndex

    新的间隔索引 IntervalIndex 通常使用 interval_range()函数来进行构造,它使用的是数据或者数值区间,基本用法:

    In [7]:

    s6 = pd.interval_range(start=0, end=6, closed="left")
    s6
    

    Out[7]:

    IntervalIndex([[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6)],
                  closed='left',
                  dtype='interval[int64]')
    

    pd.CategoricalIndex

    In [8]:

    s7 = pd.CategoricalIndex(
        # 待排序的数据
        ["S","M","L","XS","M","L","S","M","L","XL"],
        # 指定分类顺序
        categories=["XS","S","M","L","XL"],
        # 排需
        ordered=True,
        # 索引名字
        name="category"
    )
    
    s7
    

    Out[8]:

    CategoricalIndex(['S', 'M', 'L', 'XS', 'M', 'L', 'S', 'M', 'L', 'XL'], categories=['XS', 'S', 'M', 'L', 'XL'], ordered=True, name='category', dtype='category')
    

    pd.DatetimeIndex

    以时间和日期作为索引,通过date_range函数来生成,具体例子为:

    In [9]:

    # 日期作为索引,D代表天
    
    s8 = pd.date_range("2022-01-01",periods=6, freq="D")
    s8
    

    Out[9]:

    DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',
                   '2022-01-05', '2022-01-06'],
                  dtype='datetime64[ns]', freq='D')
    

    pd.PeriodIndex

    pd.PeriodIndex是一个专门针对周期性数据的索引,方便针对具有一定周期的数据进行处理,具体用法如下:

    In [10]:

    s9 = pd.PeriodIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04'], freq = '2H')
    s9
    

    Out[10]:

    PeriodIndex(['2022-01-01 00:00', '2022-01-02 00:00', '2022-01-03 00:00',
                 '2022-01-04 00:00'],
                dtype='period[2H]', freq='2H')
    

    pd.TimedeltaIndex

    In [11]:

    data = pd.timedelta_range(start='1 day', end='3 days', freq='6H')
    data
    

    Out[11]:

    TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                    '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                    '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
                   dtype='timedelta64[ns]', freq='6H')
    

    In [12]:

    s10 = pd.TimedeltaIndex(data)
    s10
    

    Out[12]:

    TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                    '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                    '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
                   dtype='timedelta64[ns]', freq='6H')
    

    属性1:name

    如果有的话,返回索引的名称

    In [13]:

    s1.name
    

    Out[13]:

    'Peter'
    

    In [14]:

    s4.name
    

    Out[14]:

    'Tom'
    

    属性2:dtype

    返回索引的数据类型

    In [15]:

    s1.dtype
    

    Out[15]:

    dtype('int64')
    

    In [16]:

    s8.dtype
    

    Out[16]:

    dtype('<M8[ns]')
    

    In [17]:

    s10.dtype
    

    Out[17]:

    dtype('<m8[ns]')
    

    属性3:array

    返回索引组成的数组:

    In [18]:

    s1.array
    

    Out[18]:

    <PandasArray>
    [1, 2, 3, 4, 5, 6, 7]
    Length: 7, dtype: int64
    

    In [19]:

    s5.array
    

    Out[19]:

    <PandasArray>
    [1.5, 2.4, 3.7, 4.9]
    Length: 4, dtype: float64
    

    In [20]:

    s8.array
    

    Out[20]:

    <DatetimeArray>
    ['2022-01-01 00:00:00', '2022-01-02 00:00:00', '2022-01-03 00:00:00',
     '2022-01-04 00:00:00', '2022-01-05 00:00:00', '2022-01-06 00:00:00']
    Length: 6, dtype: datetime64[ns]
    

    属性4:shape

    返回索引的形状:几行几列

    In [21]:

    s1.shape
    

    Out[21]:

    (7,)
    

    In [22]:

    s4.shape
    

    Out[22]:

    (4,)
    

    In [23]:

    s8.shape
    

    Out[23]:

    (6,)
    

    属性5:size

    返回索引的总个数:行数乘以列数

    In [24]:

    s1.size
    

    Out[24]:

    7
    

    In [25]:

    s2.size
    

    Out[25]:

    10
    

    In [26]:

    s5.size
    

    Out[26]:

    4
    

    In [27]:

    s10.size
    

    Out[27]:

    9
    

    属性6:empty

    返回索引是否为空

    In [28]:

    s1.empty
    

    Out[28]:

    False
    

    In [29]:

    s4.empty
    

    Out[29]:

    False
    

    In [30]:

    s10.empty
    

    Out[30]:

    False
    

    属性7:ndim

    返回索引的维度

    In [31]:

    s1.ndim
    

    Out[31]:

    1
    

    In [32]:

    s4.ndim
    

    Out[32]:

    1
    

    属性8:T

    将索引进行转置操作

    In [33]:

    s1.T
    

    Out[33]:

    Int64Index([1, 2, 3, 4, 5, 6, 7], dtype='int64', name='Peter')
    

    In [34]:

    s3.T
    

    Out[34]:

    Int64Index([1, 2, 3, 4, 5, 6, 7, 8], dtype='int64', name='Peter')
    

    In [35]:

    s6.T
    

    Out[35]:

    IntervalIndex([[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6)],
                  closed='left',
                  dtype='interval[int64]')
    

    属性9:argmax

    返回最大索引所在的位置

    In [36]:

    s1.argmax()  # 最大索引所在的位置
    

    Out[36]:

    6
    

    In [37]:

    s5.argmax()
    

    Out[37]:

    3
    

    属性10:is_integer

    判断索引是否为整数型

    In [38]:

    s1.is_integer()
    

    Out[38]:

    True
    

    In [39]:

    s2.is_integer()
    

    Out[39]:

    True
    

    In [40]:

    s6.is_integer()
    

    Out[40]:

    False
    

    属性汇总

    对Pandas的常用属性进行一下简单的汇总。需要注意的是针对行索引的属性同样适用于列属性columns,因为它们二者都是同属于Pandas中的index对象。

    [图片上传失败...(image-bf6cf4-1650039172740)]

    相关文章

      网友评论

          本文标题:Pandas中索引的常见属性

          本文链接:https://www.haomeiwen.com/subject/vhscertx.html