美文网首页
今日学术视野(2019.3.13)

今日学术视野(2019.3.13)

作者: ZQtGe6 | 来源:发表于2019-03-13 05:21 被阅读144次

    astro-ph.IM - 仪器仪表和天体物理学方法
    cs.AI - 人工智能
    cs.AR - 硬件体系结构
    cs.CC - 计算复杂度
    cs.CE - 计算工程、 金融和科学
    cs.CL - 计算与语言
    cs.CR - 加密与安全
    cs.CV - 机器视觉与模式识别
    cs.CY - 计算与社会
    cs.DB - 数据库
    cs.DC - 分布式、并行与集群计算
    cs.HC - 人机接口
    cs.IR - 信息检索
    cs.IT - 信息论
    cs.LG - 自动学习
    cs.NE - 神经与进化计算
    cs.OH - 其他CS
    cs.RO - 机器人学
    cs.SC - 符号计算
    cs.SD - 声音处理
    cs.SI - 社交网络与信息网络
    cs.SY - 系统与控制
    eess.AS - 语音处理
    eess.SP - 信号处理
    math.CO - 组合数学
    math.NA - 数值分析
    math.OC - 优化与控制
    math.PR - 概率
    math.ST - 统计理论
    physics.soc-ph - 物理学与社会
    q-bio.PE - 人口与发展
    quant-ph - 量子物理
    stat.AP - 应用统计
    stat.ME - 统计方法论
    stat.ML - (统计)机器学习

    • [astro-ph.IM]Application of Google Cloud Platform in Astrophysics
    • [cs.AI]Dynamic Demand Prediction for Expanding Electric Vehicle Sharing Systems: A Graph Sequence Learning Approach
    • [cs.AI]From Low-Level Events to Activities -- A Session-Based Approach (Extended Version)
    • [cs.AI]Improving Humanness of Virtual Agents and Users' Cooperation through Emotions
    • [cs.AI]Learning Self-Game-Play Agents for Combinatorial Optimization Problems
    • [cs.AI]Literal or Pedagogic Human? Analyzing Human Model Misspecification in Objective Learning
    • [cs.AI]Logic Rules Powered Knowledge Graph Embedding
    • [cs.AI]Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots
    • [cs.AI]Physics Enhanced Artificial Intelligence
    • [cs.AI]Program Classification Using Gated Graph Attention Neural Network for Online Programming Service
    • [cs.AI]Reachability and Coverage Planning for Connected Agents: Extended Version
    • [cs.AI]Rethinking System Health Management
    • [cs.AR]Automated Circuit Approximation Method Driven by Data Distribution
    • [cs.CC]Knowledge compilation languages as proof systems
    • [cs.CE]A Decision Support System for Multi-target Geosteering
    • [cs.CL]An Innovative Word Encoding Method For Text Classification Using Convolutional Neural Network
    • [cs.CL]Contextualised concept embedding for efficiently adapting natural language processing models for phenotype identification
    • [cs.CL]ETNLP: A Toolkit for Extraction, Evaluation and Visualization of Pre-trained Word Embeddings
    • [cs.CL]HLT@SUDA at SemEval 2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
    • [cs.CL]Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them
    • [cs.CL]Named Entity Recognition for Electronic Health Records: A Comparison of Rule-based and Machine Learning Approaches
    • [cs.CL]Partially Shuffling the Training Data to Improve Language Models
    • [cs.CL]Toward Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
    • [cs.CR]Incentives in Ethereum's Hybrid Casper Protocol
    • [cs.CV]A Hybrid Framework for Action Recognition in Low-Quality Video Sequences
    • [cs.CV]A Hybrid GA-PSO Method for Evolving Architecture and Short Connections of Deep Convolutional Neural Networks
    • [cs.CV]A Unified Formulation for Visual Odometry
    • [cs.CV]ADS-ME: Anomaly Detection System for Micro-expression Spotting
    • [cs.CV]Accuracy Booster: Performance Boosting using Feature Map Re-calibration
    • [cs.CV]Automated Segmentation of Knee MRI Using Hierarchical Classifiers and Just Enough Interaction Based Learning: Data from Osteoarthritis Initiative
    • [cs.CV]BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
    • [cs.CV]Combining 3D Morphable Models: A Large scale Face-and-Head Model
    • [cs.CV]Deep Generative Models: Deterministic Prediction with an Application in Inverse Rendering
    • [cs.CV]Deep Reinforcement Learning of Volume-guided Progressive View Inpainting for 3D Point Scene Completion from a Single Depth Image
    • [cs.CV]Deep Robust Subjective Visual Property Prediction in Crowdsourcing
    • [cs.CV]Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury
    • [cs.CV]Domain Randomization for Active Pose Estimation
    • [cs.CV]Fast Single Image Reflection Suppression via Convex Optimization
    • [cs.CV]Group-wise Correlation Stereo Network
    • [cs.CV]HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs
    • [cs.CV]Hierarchy Denoising Recursive Autoencoders for 3D Scene Layout Prediction
    • [cs.CV]How Effectively Can Indoor Wireless Positioning Relieve Visual Tracking Pains: A Camera-Rao Bound Viewpoint
    • [cs.CV]Image Privacy Prediction Using Deep Neural Networks
    • [cs.CV]Instance- and Category-level 6D Object Pose Estimation
    • [cs.CV]Investigation on Combining 3D Convolution of Image Data and Optical Flow to Generate Temporal Action Proposals
    • [cs.CV]Joint inference on structural and diffusion MRI for sequence-adaptive Bayesian segmentation of thalamic nuclei with probabilistic atlases
    • [cs.CV]Just-Enough Interaction Approach to Knee MRI Segmentation: Data from the Osteoarthritis Initiative
    • [cs.CV]Learning-Based Cost Functions for 3D and 4D Multi-Surface Multi-Object Segmentation of Knee MRI: Data from the Osteoarthritis Initiative
    • [cs.CV]LumiPath - Towards Real-time Physically-based Rendering on Embedded Devices
    • [cs.CV]MSFD:Multi-Scale Receptive Field Face Detector
    • [cs.CV]MTRNet: A Generic Scene Text Eraser
    • [cs.CV]Manifold Mixup improves text recognition with CTC loss
    • [cs.CV]Mix and match networks: multi-domain alignment for unpaired image-to-image translation
    • [cs.CV]Multiview 2D/3D Rigid Registration via a Point-Of-Interest Network for Tracking and Triangulation (POINT^2)
    • [cs.CV]Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
    • [cs.CV]Pluralistic Image Completion
    • [cs.CV]Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular Depth Estimation
    • [cs.CV]RoPAD: Robust Presentation Attack Detection through Unsupervised Adversarial Invariance
    • [cs.CV]Rolling-Shutter-Aware Differential SfM and Image Rectification
    • [cs.CV]SSN: Learning Sparse Switchable Normalization via SparsestMax
    • [cs.CV]Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes
    • [cs.CV]Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
    • [cs.CV]Sparse Representations for Object and Ego-motion Estimation in Dynamic Scenes
    • [cs.CV]Spatial-Aware Non-Local Attention for Fashion Landmark Detection
    • [cs.CV]Stroke-based Artistic Rendering Agent with Deep Reinforcement Learning
    • [cs.CV]Structured Knowledge Distillation for Semantic Segmentation
    • [cs.CV]The Past and the Present of the Color Checker Dataset Misuse
    • [cs.CV]The Unconstrained Ear Recognition Challenge 2019
    • [cs.CV]Video Generation from Single Semantic Label Map
    • [cs.CY]A reference architecture for integrating the Industrial Internet of Things in the Industry 4.0
    • [cs.CY]Blameworthiness in Multi-Agent Settings
    • [cs.CY]Gathering Insights from Teenagers' Hacking Experience with Authentic Cybersecurity Tools
    • [cs.CY]Standardisation of cyber risk impact assessment for the Internet of Things (IoT)
    • [cs.DB]Graph Data on the Web: extend the pivot, don't reinvent the wheel
    • [cs.DB]RESTORE: Automated Regression Testing for Datasets
    • [cs.DB]Transparency, Fairness, Data Protection, Neutrality: Data Management Challenges in the Face of New Regulation
    • [cs.DC]A GraphBLAS Approach for Subgraph Counting
    • [cs.DC]Analyzing GPU Tensor Core Potential for Fast Reductions
    • [cs.DC]Asynchronous Federated Optimization
    • [cs.DC]Auto-Vectorizing TensorFlow Graphs: Jacobians, Auto-Batching And Beyond
    • [cs.DC]Proteus: A Scalable BFT Consesus Protocol for Blockchains
    • [cs.DC]Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms
    • [cs.DC]TensorFlow Doing HPC
    • [cs.HC]Exploring OpenStreetMap Availability for Driving Environment Understanding
    • [cs.IR]A Clustering-Based Combinatorial Approach to Unsupervised Matching of Product Titles
    • [cs.IR]A New Approach for Topic Detection using Adaptive Neural Networks
    • [cs.IR]Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data
    • [cs.IR]Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
    • [cs.IR]Mutual Clustering on Comparative Texts via Heterogeneous Information Networks
    • [cs.IR]The Web is missing an essential part of infrastructure: an Open Web Index
    • [cs.IT]A Low-Complexity Cache-Aided Multi-antenna Content Delivery Scheme
    • [cs.IT]A simple bound on the BER of the MAP decoder for massive MIMO systems
    • [cs.IT]Clustering-Correcting Codes
    • [cs.IT]Hybrid Transceiver Optimization for Multi-Hop Communications
    • [cs.IT]Interference Mitigation for Ultrareliable Low-Latency Wireless Communication
    • [cs.IT]Molecular Information Delivery in Porous Media
    • [cs.IT]Optimizing Information Freshness in Broadcast Network with Unreliable Links and Random Arrivals: An Approximate Index Policy
    • [cs.IT]Probability Mass Functions for which Sources have the Maximum Minimum Expected Length
    • [cs.IT]Publicness, Privacy and Confidentiality in the Single-Serving Quantum Broadcast Channel
    • [cs.IT]Semi-Blind Channel-and-Signal Estimation for Uplink Massive MIMO With Channel Sparsity
    • [cs.IT]Strengthened Information-theoretic Bounds on the Generalization Error
    • [cs.IT]The parameters of a family of linear codes
    • [cs.LG]Accelerating Minibatch Stochastic Gradient Descent using Typicality Sampling
    • [cs.LG]Algorithms for an Efficient Tensor Biclustering
    • [cs.LG]Based on Graph-VAE Model to Predict Student's Score
    • [cs.LG]Continual Learning via Neural Pruning
    • [cs.LG]Deep Recurrent Q-Learning vs Deep Q-Learning on a simple Partially Observable Markov Decision Process with Minecraft
    • [cs.LG]Deep learning for molecular generation and optimization - a review of the state of the art
    • [cs.LG]Fair Logistic Regression: An Adversarial Perspective
    • [cs.LG]Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation
    • [cs.LG]Fisher-Bures Adversary Graph Convolutional Networks
    • [cs.LG]GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks
    • [cs.LG]Gradient Descent based Optimization Algorithms for Deep Learning Models Training
    • [cs.LG]Hybrid Reinforcement Learning with Expert State Sequences
    • [cs.LG]InceptionGCN: Receptive Field Aware Graph Convolutional Network for Disease Prediction
    • [cs.LG]Interpreting and Understanding Graph Convolutional Neural Network using Gradient-based Attribution Methods
    • [cs.LG]Labeler-hot Detection of EEG Epileptic Transients
    • [cs.LG]Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games
    • [cs.LG]Learning Quantum Graphical Models using Constrained Gradient Descent on the Stiefel Manifold
    • [cs.LG]Machine Learning Based Prediction and Classification of Computational Jobs in Cloud Computing Centers
    • [cs.LG]Multinomial Random Forests: Fill the Gap between Theoretical Consistency and Empirical Soundness
    • [cs.LG]Non-Negative Kernel Sparse Coding for the Classification of Motion Data
    • [cs.LG]One-Pass Sparsified Gaussian Mixtures
    • [cs.LG]Optimal Collusion-Free Teaching
    • [cs.LG]Revisiting clustering as matrix factorisation on the Stiefel manifold
    • [cs.LG]Robust Influence Maximization for Hyperparametric Models
    • [cs.LG]Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
    • [cs.LG]Scaling up deep neural networks: a capacity allocation perspective
    • [cs.LG]Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks
    • [cs.LG]Similarity Learning via Kernel Preserving Embedding
    • [cs.LG]Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
    • [cs.LG]SleepNet: Automated Sleep Disorder Detection via Dense Convolutional Neural Network
    • [cs.LG]Stochastic Incremental Algorithms for Optimal Transport with SON Regularizer
    • [cs.LG]Successive Over Relaxation Q-Learning
    • [cs.LG]Two-Hop Walks Indicate PageRank Order
    • [cs.NE]A Genetic Programming System with an Epigenetic Mechanism for Traffic Signal Control
    • [cs.NE]A Spiking Network for Inference of Relations Trained with Neuromorphic Backpropagation
    • [cs.NE]DeepPool: Distributed Model-free Algorithm for Ride-sharing using Deep Reinforcement Learning
    • [cs.OH]Pragmatic inference and visual abstraction enable contextual flexibility during visual communication
    • [cs.RO]2-Entity RANSAC for robust visual localization in changing environment
    • [cs.RO]Adaptive Trajectory Planning and Optimization at Limits of Handling
    • [cs.RO]Affordance Learning for End-to-End Visuomotor Robot Control
    • [cs.RO]Building an Affordances Map with Interactive Perception
    • [cs.RO]Communication constrained cloud-based long-term visual localization in real time
    • [cs.RO]Data-Driven Model Predictive Control for Food-Cutting
    • [cs.RO]Joint Inference of Kinematic and Force Trajectories with Visuo-Tactile Sensing
    • [cs.RO]Locomotion Planning through a Hybrid Bayesian Trajectory Optimization
    • [cs.RO]Manipulation by Feel: Touch-Based Control with Deep Predictive Models
    • [cs.RO]Object recognition and tracking using Haar-like Features Cascade Classifiers: Application to a quad-rotor UAV
    • [cs.RO]Realtime Rooftop Landing Site Identification and Selection in Urban City Simulation
    • [cs.RO]Robot kinematic structure classification from time series of visual data
    • [cs.SC]Recursive Matrix Algorithms in Commutative Domain for Cluster with Distributed Memory
    • [cs.SD]Deep Griffin-Lim Iteration
    • [cs.SI]DeepTagRec: A Content-cum-User based Tag Recommendation Framework for Stack Overflow
    • [cs.SI]Hashtag Usage in a Geographically-Local Microblogging App
    • [cs.SI]Redditors in Recovery: Text Mining Reddit to Investigate Transitions into Drug Addiction
    • [cs.SI]Towards a new social laboratory: An experimental study of search through community participation at Burning Man
    • [cs.SY]A tractable ellipsoidal approximation for voltage regulation problems
    • [eess.AS]Singing voice conversion with non-parallel data
    • [eess.SP]Towards Ultra-Reliable Low-Latency Communications: Typical Scenarios, Possible Solutions, and Open Issues
    • [math.CO]Equivalence classes of Niho bent functions
    • [math.NA]A highly parallel multilevel Newton-Krylov-Schwarz method with subspace-based coarsening and partition-based balancing for the multigroup neutron transport equations on 3D unstructured meshes
    • [math.OC]Conformal Symplectic and Relativistic Optimization
    • [math.OC]Scalable and Congestion-aware Routing for Autonomous Mobility-on-Demand via Frank-Wolfe Optimization
    • [math.PR]Mean Field Analysis of Deep Neural Networks
    • [math.PR]Quantitative spectral gap estimate and Wasserstein contraction of simple slice sampling
    • [math.ST]Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model
    • [math.ST]Diffusion K-means clustering on manifolds: provable exact recovery via semidefinite relaxations
    • [math.ST]Extreme events of higher-order Markov chains: hidden tail chains and extremal Yule-Walker equations
    • [math.ST]Fitting Tractable Convex Sets to Support Function Evaluations
    • [math.ST]Maximum pseudo-likelihood estimation based on estimated residuals in copula semiparametric models
    • [physics.soc-ph]Scaling in Words on Twitter
    • [q-bio.PE]On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model
    • [quant-ph]Quantifying the magic of quantum channels
    • [stat.AP]Better-than-expert detection of early coronary artery occlusion from 12 lead electrocardiograms using deep learning
    • [stat.AP]Retailer response to wholesale stockouts
    • [stat.AP]Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics
    • [stat.ME]A Potential Outcomes Calculus for Identifying Conditional Path-Specific Effects
    • [stat.ME]A synthetic likelihood-based Laplace approximation for efficient design of biological processes
    • [stat.ME]Adaptive-to-model hybrid of tests for regressions
    • [stat.ME]Confidence Interval for Quantile Ratio of the Dagum Distribution
    • [stat.ME]Distributed Feature Screening via Componentwise Debiasing
    • [stat.ME]Estimating Individualized Decision Rules with Tail Controls
    • [stat.ME]Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach
    • [stat.ME]Lasso tuning through the flexible-weighted bootstrap
    • [stat.ME]Streamlined Variational Inference for Higher Level Group-Specific Curve Models
    • [stat.ME]The Shortest Confidence Interval for the Ratio of Quantiles of the Dagum Distribution
    • [stat.ME]Transporting stochastic direct and indirect effects to new populations
    • [stat.ME]Two paradoxical results in linear models: the variance inflation factor and the analysis of covariance
    • [stat.ML]β^3-IRT: A New Item Response Model and its Applications
    • [stat.ML]A cross-center smoothness prior for variational Bayesian brain tissue segmentation
    • [stat.ML]Bayesian Allocation Model: Inference by Sequential Monte Carlo for Nonnegative Tensor Factorizations and Topic Models using Polya Urns
    • [stat.ML]Functional Principal Component Analysis for Extrapolating Multi-stream Longitudinal Data
    • [stat.ML]Interpolation Consistency Training for Semi-Supervised Learning
    • [stat.ML]Likelihood-free MCMC with Approximate Likelihood Ratios
    • [stat.ML]Manifold Preserving Adversarial Learning
    • [stat.ML]Orthogonal Estimation of Wasserstein Distances
    • [stat.ML]Rectangular Bounding Process
    • [stat.ML]Shapley regressions: A framework for statistical inference on machine learning models
    • [stat.ML]Sparse Grouped Gaussian Processes for Solar Power Forecasting
    • [stat.ML]Uncertainty Propagation in Deep Neural Network Using Active Subspace
    • [stat.ML]Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes

    ·····································

    • [astro-ph.IM]Application of Google Cloud Platform in Astrophysics
    M. Landoni, G. Taffoni, A. Bignamini, R. Smareglia
    http://arxiv.org/abs/1903.03337v1

    • [cs.AI]Dynamic Demand Prediction for Expanding Electric Vehicle Sharing Systems: A Graph Sequence Learning Approach
    Man Luo, Hongkai Wen, Yi Luo, Bowen Du, Konstantin Klemmer, Hongming Zhu
    http://arxiv.org/abs/1903.04051v1

    • [cs.AI]From Low-Level Events to Activities -- A Session-Based Approach (Extended Version)
    Massimiliano de Leoni
    http://arxiv.org/abs/1903.03993v1

    • [cs.AI]Improving Humanness of Virtual Agents and Users' Cooperation through Emotions
    Moojan Ghafurian, Neil Budnarain, Jesse Hoey
    http://arxiv.org/abs/1903.03980v1

    • [cs.AI]Learning Self-Game-Play Agents for Combinatorial Optimization Problems
    Ruiyang Xu, Karl Lieberherr
    http://arxiv.org/abs/1903.03674v1

    • [cs.AI]Literal or Pedagogic Human? Analyzing Human Model Misspecification in Objective Learning
    Smitha Milli, Anca D. Dragan
    http://arxiv.org/abs/1903.03877v1

    • [cs.AI]Logic Rules Powered Knowledge Graph Embedding
    Pengwei Wang, Dejing Dou, Fangzhao Wu, Nisansa de Silva, Lianwen Jin
    http://arxiv.org/abs/1903.03772v1

    • [cs.AI]Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots
    Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Kästner, David Garlan
    http://arxiv.org/abs/1903.03920v1

    • [cs.AI]Physics Enhanced Artificial Intelligence
    Patrick O'Driscoll, Jaehoon Lee, Bo Fu
    http://arxiv.org/abs/1903.04442v1

    • [cs.AI]Program Classification Using Gated Graph Attention Neural Network for Online Programming Service
    Mingming Lu, Dingwu Tan, Naixue Xiong, Zailiang Chen, Haifeng Li
    http://arxiv.org/abs/1903.03804v1

    • [cs.AI]Reachability and Coverage Planning for Connected Agents: Extended Version
    Tristan Charrier, Arthur Queffelec, Ocan Sankur, François Schwarzentruber
    http://arxiv.org/abs/1903.04300v1

    • [cs.AI]Rethinking System Health Management
    Edward Balaban, Stephen B. Johnson, Mykel J. Kochenderfer
    http://arxiv.org/abs/1903.03948v1

    • [cs.AR]Automated Circuit Approximation Method Driven by Data Distribution
    Zdenek Vasicek, Vojtech Mrazek, Lukas Sekanina
    http://arxiv.org/abs/1903.04188v1

    • [cs.CC]Knowledge compilation languages as proof systems
    Florent Capelli
    http://arxiv.org/abs/1903.04039v1

    • [cs.CE]A Decision Support System for Multi-target Geosteering
    Sergey Alyaev, Erich Suter, Reidar Bratvold, Aojie Hong, Xiaodong Luo
    http://arxiv.org/abs/1903.03933v1

    • [cs.CL]An Innovative Word Encoding Method For Text Classification Using Convolutional Neural Network
    Amr Adel Helmy, Yasser M. K. Omar, Rania Hodhod
    http://arxiv.org/abs/1903.04146v1

    • [cs.CL]Contextualised concept embedding for efficiently adapting natural language processing models for phenotype identification
    Honghan Wu, Karen Hodgson, Susan Dyson, Katherine I. Morley, Zina M. Ibrahim, Ehtesham Iqbal, Robert Stewart, Richard JB Dobson, Cathie Sudlow
    http://arxiv.org/abs/1903.03995v1

    • [cs.CL]ETNLP: A Toolkit for Extraction, Evaluation and Visualization of Pre-trained Word Embeddings
    Xuan-Son Vu, Thanh Vu, Son N. Tran, Lili Jiang
    http://arxiv.org/abs/1903.04433v1

    • [cs.CL]HLT@SUDA at SemEval 2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
    Wei Jiang, Yu Zhang, Zhenghua Li, Min Zhang
    http://arxiv.org/abs/1903.04153v1

    • [cs.CL]Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them
    Hila Gonen, Yoav Goldberg
    http://arxiv.org/abs/1903.03862v1

    • [cs.CL]Named Entity Recognition for Electronic Health Records: A Comparison of Rule-based and Machine Learning Approaches
    Philip John Gorinski, Honghan Wu, Claire Grover, Richard Tobin, Conn Talbot, Heather Whalley, Cathie Sudlow, William Whiteley, Beatrice Alex
    http://arxiv.org/abs/1903.03985v1

    • [cs.CL]Partially Shuffling the Training Data to Improve Language Models
    Ofir Press
    http://arxiv.org/abs/1903.04167v1

    • [cs.CL]Toward Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
    Weipeng Huang, Xingyi Cheng, Kunlong Chen, Taifeng Wang, Wei Chu
    http://arxiv.org/abs/1903.04190v1

    • [cs.CR]Incentives in Ethereum's Hybrid Casper Protocol
    Vitalik Buterin, Daniel Reijsbergen, Stefanos Leonardos, Georgios Piliouras
    http://arxiv.org/abs/1903.04205v1

    • [cs.CV]A Hybrid Framework for Action Recognition in Low-Quality Video Sequences
    Tej Singh, Dinesh Kumar Vishwakarma
    http://arxiv.org/abs/1903.04090v1

    • [cs.CV]A Hybrid GA-PSO Method for Evolving Architecture and Short Connections of Deep Convolutional Neural Networks
    Bin Wang, Yanan Sun, Bing Xue, Mengjie Zhang
    http://arxiv.org/abs/1903.03893v1

    • [cs.CV]A Unified Formulation for Visual Odometry
    Georges Younes, Daniel Asmar, John Zelek
    http://arxiv.org/abs/1903.04253v1

    • [cs.CV]ADS-ME: Anomaly Detection System for Micro-expression Spotting
    Dawood Al Chanti, Alice Caplier
    http://arxiv.org/abs/1903.04354v1

    • [cs.CV]Accuracy Booster: Performance Boosting using Feature Map Re-calibration
    Pravendra Singh, Pratik Mazumder, Vinay P. Namboodiri
    http://arxiv.org/abs/1903.04407v1

    • [cs.CV]Automated Segmentation of Knee MRI Using Hierarchical Classifiers and Just Enough Interaction Based Learning: Data from Osteoarthritis Initiative
    Satyananda Kashyap, Ipek Oguz, Honghai Zhang, Milan Sonka
    http://arxiv.org/abs/1903.03929v1

    • [cs.CV]BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
    Ali Harakeh, Michael Smart, Steven L. Waslander
    http://arxiv.org/abs/1903.03838v1

    • [cs.CV]Combining 3D Morphable Models: A Large scale Face-and-Head Model
    Stylianos Ploumpis, Haoyang Wang, Nick Pears, William A. P. Smith, Stefanos Zafeiriou
    http://arxiv.org/abs/1903.03785v1

    • [cs.CV]Deep Generative Models: Deterministic Prediction with an Application in Inverse Rendering
    Shima Kamyab, Rasool Sabzi, Zohreh Azimifar
    http://arxiv.org/abs/1903.04144v1

    • [cs.CV]Deep Reinforcement Learning of Volume-guided Progressive View Inpainting for 3D Point Scene Completion from a Single Depth Image
    Xiaoguang Han, Zhaoxuan Zhang, Dong Du, Mingdai Yang, Jingming Yu, Pan Pan, Xin Yang, Ligang Liu, Zixiang Xiong, Shuguang Cui
    http://arxiv.org/abs/1903.04019v1

    • [cs.CV]Deep Robust Subjective Visual Property Prediction in Crowdsourcing
    Qianqian Xu, Zhiyong Yang, Yangbangyan Jiang, Xiaochun Cao, Qingming Huang, Yuan Yao
    http://arxiv.org/abs/1903.03956v1

    • [cs.CV]Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury
    Samuel Remedios, Snehashis Roy, Justin Blaber, Camilo Bermudez, Vishwesh Nath, Mayur B. Patel, John A. Butman, Bennett A. Landman, Dzung L. Pham
    http://arxiv.org/abs/1903.04207v1

    • [cs.CV]Domain Randomization for Active Pose Estimation
    Xinyi Ren, Jianlan Luo, Eugen Solowjow, Juan Aparicio Ojea, Abhishek Gupta, Aviv Tamar, Pieter Abbeel
    http://arxiv.org/abs/1903.03953v1

    • [cs.CV]Fast Single Image Reflection Suppression via Convex Optimization
    Yang Yang, Wenye Ma, Yin Zheng, Jian-Feng Cai, Weiyu Xu
    http://arxiv.org/abs/1903.03889v1

    • [cs.CV]Group-wise Correlation Stereo Network
    Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, Hongsheng Li
    http://arxiv.org/abs/1903.04025v1

    • [cs.CV]HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs
    Pravendra Singh, Vinay Kumar Verma, Piyush Rai, Vinay P. Namboodiri
    http://arxiv.org/abs/1903.04120v1

    • [cs.CV]Hierarchy Denoising Recursive Autoencoders for 3D Scene Layout Prediction
    Yifei Shi, Angel Xuan Chang, Zhelun Wu, Manolis Savva, Kai Xu
    http://arxiv.org/abs/1903.03757v1

    • [cs.CV]How Effectively Can Indoor Wireless Positioning Relieve Visual Tracking Pains: A Camera-Rao Bound Viewpoint
    Panwen Hu, Zizheng Yan, Rui Huang, Feng Yin
    http://arxiv.org/abs/1903.03736v1

    • [cs.CV]Image Privacy Prediction Using Deep Neural Networks
    Ashwini Tonge, Cornelia Caragea
    http://arxiv.org/abs/1903.03695v1

    • [cs.CV]Instance- and Category-level 6D Object Pose Estimation
    Caner Sahin, Guillermo Garcia-Hernando, Juil Sock, Tae-Kyun Kim
    http://arxiv.org/abs/1903.04229v1

    • [cs.CV]Investigation on Combining 3D Convolution of Image Data and Optical Flow to Generate Temporal Action Proposals
    Patrick Schlosser, David Münch, Michael Arens
    http://arxiv.org/abs/1903.04176v1

    • [cs.CV]Joint inference on structural and diffusion MRI for sequence-adaptive Bayesian segmentation of thalamic nuclei with probabilistic atlases
    Juan Eugenio Iglesias, Koen Van Leemput, Polina Golland, Anastasia Yendiki
    http://arxiv.org/abs/1903.04352v1

    • [cs.CV]Just-Enough Interaction Approach to Knee MRI Segmentation: Data from the Osteoarthritis Initiative
    Satyananda Kashyap, Honghai Zhang, Milan Sonka
    http://arxiv.org/abs/1903.04027v1

    • [cs.CV]Learning-Based Cost Functions for 3D and 4D Multi-Surface Multi-Object Segmentation of Knee MRI: Data from the Osteoarthritis Initiative
    Satyananda Kashyap, Honghai Zhang, Karan Rao, Milan Sonka
    http://arxiv.org/abs/1903.03927v1

    • [cs.CV]LumiPath - Towards Real-time Physically-based Rendering on Embedded Devices
    Laura Fink, Sing Chun Lee, Marc Stamminger, Nassir Navab, Mathias Unberath
    http://arxiv.org/abs/1903.03837v1

    • [cs.CV]MSFD:Multi-Scale Receptive Field Face Detector
    Qiushan Guo, Yuan Dong, Yu Guo, Hongliang Bai
    http://arxiv.org/abs/1903.04147v1

    • [cs.CV]MTRNet: A Generic Scene Text Eraser
    Osman Tursun, Rui Zeng, Simon Denman, Sabesan Sivipalan, Sridha Sridharan, Clinton Fookes
    http://arxiv.org/abs/1903.04092v1

    • [cs.CV]Manifold Mixup improves text recognition with CTC loss
    Bastien Moysset, Ronaldo Messina
    http://arxiv.org/abs/1903.04246v1

    • [cs.CV]Mix and match networks: multi-domain alignment for unpaired image-to-image translation
    Yaxing Wang, Luis Herranz, Joost van de Weijer
    http://arxiv.org/abs/1903.04294v1

    • [cs.CV]Multiview 2D/3D Rigid Registration via a Point-Of-Interest Network for Tracking and Triangulation (POINT^2)
    Haofu Liao, Wei-An Lin, Jiarui Zhang, Jingdan Zhang, Jiebo Luo, S. Kevin Zhou
    http://arxiv.org/abs/1903.03896v1

    • [cs.CV]Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
    Xin Li, Yiming Zhou, Zheng Pan, Jiashi Feng
    http://arxiv.org/abs/1903.03777v1

    • [cs.CV]Pluralistic Image Completion
    Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai
    http://arxiv.org/abs/1903.04227v1

    • [cs.CV]Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular Depth Estimation
    Andrea Pilzer, Stéphane Lathuilière, Nicu Sebe, Elisa Ricci
    http://arxiv.org/abs/1903.04202v1

    • [cs.CV]RoPAD: Robust Presentation Attack Detection through Unsupervised Adversarial Invariance
    Ayush Jaiswal, Shuai Xia, Iacopo Masi, Wael AbdAlmageed
    http://arxiv.org/abs/1903.03691v1

    • [cs.CV]Rolling-Shutter-Aware Differential SfM and Image Rectification
    Bingbing Zhuang, Loong-Fah Cheong, Gim Hee Lee
    http://arxiv.org/abs/1903.03943v1

    • [cs.CV]SSN: Learning Sparse Switchable Normalization via SparsestMax
    Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang, Yudian Li, Xiaogang Wang, Ping Luo
    http://arxiv.org/abs/1903.03793v1

    • [cs.CV]Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes
    Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, Kai Xu
    http://arxiv.org/abs/1903.03911v1

    • [cs.CV]Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
    Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, Daniel Ulbricht
    http://arxiv.org/abs/1903.04064v1

    • [cs.CV]Sparse Representations for Object and Ego-motion Estimation in Dynamic Scenes
    Hirak J Kashyap, Charless Fowlkes, Jeffrey L Krichmar
    http://arxiv.org/abs/1903.03731v1

    • [cs.CV]Spatial-Aware Non-Local Attention for Fashion Landmark Detection
    Yixin Li, Shengqin Tang, Yun Ye, Jinwen Ma
    http://arxiv.org/abs/1903.04104v1

    • [cs.CV]Stroke-based Artistic Rendering Agent with Deep Reinforcement Learning
    Zhewei Huang, Wen Heng, Shuchang Zhou
    http://arxiv.org/abs/1903.04411v1

    • [cs.CV]Structured Knowledge Distillation for Semantic Segmentation
    Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, Jingdong Wang
    http://arxiv.org/abs/1903.04197v1

    • [cs.CV]The Past and the Present of the Color Checker Dataset Misuse
    Nikola Banić, Karlo Koš{č}ević, Marko Subašić, Sven Lon{č}arić
    http://arxiv.org/abs/1903.04473v1

    • [cs.CV]The Unconstrained Ear Recognition Challenge 2019
    Žiga Emeršič, Aruna Kumar S. V., B. S. Harish, Weronika Gutfeter, Jalil Nourmohammadi Khiarak, Andrzej Pacut, Earnest Hansley, Mauricio Pamplona Segundo, Sudeep Sarkar, Hyeonjung Park, Gi Pyo Nam, Ig-Jae Kim, Sagar G. Sangodkar, Ümit Kaçar, Murvet Kirci, Li Yuan, Jishou Yuan, Haonan Zhao, Fei Lu, Junying Mao, Xiaoshuang Zhang, Dogucan Yaman, Fevziye Irem Eyiokur, Kadir Bulut Özler, Hazım Kemal Ekenel, Debbrota Paul Chowdhury, Sambit Bakshi, Banshidhar Majhi, Peter Peer, Vitomir Štruc
    http://arxiv.org/abs/1903.04143v1

    • [cs.CV]Video Generation from Single Semantic Label Map
    Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, Xiaogang Wang
    http://arxiv.org/abs/1903.04480v1

    • [cs.CY]A reference architecture for integrating the Industrial Internet of Things in the Industry 4.0
    Petar Radanliev, David De Roure, Razvan Nicolescu, Michael Huth
    http://arxiv.org/abs/1903.04369v1

    • [cs.CY]Blameworthiness in Multi-Agent Settings
    Meir Friedenberg, Joseph Y. Halpern
    http://arxiv.org/abs/1903.04102v1

    • [cs.CY]Gathering Insights from Teenagers' Hacking Experience with Authentic Cybersecurity Tools
    Valdemar Švábenský, Jan Vykopal
    http://arxiv.org/abs/1903.04174v1

    • [cs.CY]Standardisation of cyber risk impact assessment for the Internet of Things (IoT)
    Petar Radanliev, David De Roure, Jason Nurse, Rafael Mantilla Montalvo, Peter Burnap
    http://arxiv.org/abs/1903.04428v1

    • [cs.DB]Graph Data on the Web: extend the pivot, don't reinvent the wheel
    Fabien Gandon, Franck Michel, Olivier Corby, Michel Buffa, Andrea Tettamanzi, Catherine Faron Zucker, Elena Cabrio, Serena Villata
    http://arxiv.org/abs/1903.04181v1

    • [cs.DB]RESTORE: Automated Regression Testing for Datasets
    Lei Zhang, Sean Howard, Tom Montpool, Jessica Moore, Krittika Mahajan, Andriy Miranskyy
    http://arxiv.org/abs/1903.03676v1

    • [cs.DB]Transparency, Fairness, Data Protection, Neutrality: Data Management Challenges in the Face of New Regulation
    Serge Abiteboul, Julia Stoyanovich
    http://arxiv.org/abs/1903.03683v1

    • [cs.DC]A GraphBLAS Approach for Subgraph Counting
    Langshi Chen, Jiayu Li, Ariful Azad, Lei Jiang, Madhav Marathe, Anil Vullikanti, Andrey Nikolaev, Egor Smirnov, Ruslan Israfilov, Judy Qiu
    http://arxiv.org/abs/1903.04395v1

    • [cs.DC]Analyzing GPU Tensor Core Potential for Fast Reductions
    Roberto Carrasco, Raimundo Vega, Cristóbal A. Navarro
    http://arxiv.org/abs/1903.03640v1

    • [cs.DC]Asynchronous Federated Optimization
    Cong Xie, Sanmi Koyejo, Indranil Gupta
    http://arxiv.org/abs/1903.03934v1

    • [cs.DC]Auto-Vectorizing TensorFlow Graphs: Jacobians, Auto-Batching And Beyond
    Ashish Agarwal, Igor Ganichev
    http://arxiv.org/abs/1903.04243v1

    • [cs.DC]Proteus: A Scalable BFT Consesus Protocol for Blockchains
    Mohammad M. Jalalzai, Costas Busch, Golden Richard III
    http://arxiv.org/abs/1903.04134v1

    • [cs.DC]Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms
    Christian Göttel, Rafael Pires, Isabelly Rocha, Sébastien Vaucher, Pascal Felber, Marcelo Pasin, Valerio Schiavoni
    http://arxiv.org/abs/1903.04203v1

    • [cs.DC]TensorFlow Doing HPC
    Steven W. D. Chien, Stefano Markidis, Vyacheslav Olshevsky, Yaroslav Bulatov, Erwin Laure, Jeffrey S. Vetter
    http://arxiv.org/abs/1903.04364v1

    • [cs.HC]Exploring OpenStreetMap Availability for Driving Environment Understanding
    Yang Zheng, Izzat H. Izzat, John H. L. Hansen
    http://arxiv.org/abs/1903.04084v1

    • [cs.IR]A Clustering-Based Combinatorial Approach to Unsupervised Matching of Product Titles
    Leonidas Akritidis, Athanasios Fevgas, Panayiotis Bozanis, Christos Makris
    http://arxiv.org/abs/1903.04276v1

    • [cs.IR]A New Approach for Topic Detection using Adaptive Neural Networks
    Meriem Manai
    http://arxiv.org/abs/1903.03775v1

    • [cs.IR]Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data
    Yiming Xu, Dnyanesh Rajpathak, Ian Gibbs, Diego Klabjan
    http://arxiv.org/abs/1903.04360v1

    • [cs.IR]Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
    Weizhi Ma, Min Zhang, Yue Cao, Woojeong, Jin, Chenyang Wang, Yiqun Liu, Shaoping Ma, Xiang Ren
    http://arxiv.org/abs/1903.03714v1

    • [cs.IR]Mutual Clustering on Comparative Texts via Heterogeneous Information Networks
    Jianping Cao, Senzhang Wang, Danyan Wen, Zhaohui Peng, Philip S. Yu, Fei-yue Wang
    http://arxiv.org/abs/1903.03762v1

    • [cs.IR]The Web is missing an essential part of infrastructure: an Open Web Index
    Dirk Lewandowski
    http://arxiv.org/abs/1903.03846v1

    • [cs.IT]A Low-Complexity Cache-Aided Multi-antenna Content Delivery Scheme
    Junlin Zhao, Mohammad Mohammadi Amiri, Deniz Gündüz
    http://arxiv.org/abs/1903.03856v1

    • [cs.IT]A simple bound on the BER of the MAP decoder for massive MIMO systems
    Christos Thrampoulidis, Ilias Zadik, Yury Polyanskiy
    http://arxiv.org/abs/1903.03949v1

    • [cs.IT]Clustering-Correcting Codes
    Tal Shinkar, Eitan Yaakobi, Andreas Lenz, Antonia Wachter-Zeh
    http://arxiv.org/abs/1903.04122v1

    • [cs.IT]Hybrid Transceiver Optimization for Multi-Hop Communications
    Chengwen Xing, Xin Zhao, Shuai Wang, Wei Xu, Soon Xin Ng, Sheng Chen
    http://arxiv.org/abs/1903.03820v1

    • [cs.IT]Interference Mitigation for Ultrareliable Low-Latency Wireless Communication
    S. Arvin Ayoughi, Wei Yu, Saeed R. Khosravirad, Harish Viswanathan
    http://arxiv.org/abs/1903.04130v1

    • [cs.IT]Molecular Information Delivery in Porous Media
    Yuting Fang, Weisi Guo, Matteo Icardi, Adam Noel, Nan Yang
    http://arxiv.org/abs/1903.03738v1

    • [cs.IT]Optimizing Information Freshness in Broadcast Network with Unreliable Links and Random Arrivals: An Approximate Index Policy
    Jingzhou Sun, Zhiyuan Jiang, Sheng Zhou, Zhisheng Niu
    http://arxiv.org/abs/1903.03723v1

    • [cs.IT]Probability Mass Functions for which Sources have the Maximum Minimum Expected Length
    Shivkumar K. Manickam
    http://arxiv.org/abs/1903.03755v1

    • [cs.IT]Publicness, Privacy and Confidentiality in the Single-Serving Quantum Broadcast Channel
    Farzin Salek, Min-Hsiu Hsieh, Javier R. Fonollosa
    http://arxiv.org/abs/1903.04463v1

    • [cs.IT]Semi-Blind Channel-and-Signal Estimation for Uplink Massive MIMO With Channel Sparsity
    Wenjing Yan, Xiaojun Yuan
    http://arxiv.org/abs/1903.04163v1

    • [cs.IT]Strengthened Information-theoretic Bounds on the Generalization Error
    Ibrahim Issa, Amedeo Roberto Esposito, Michael Gastpar
    http://arxiv.org/abs/1903.03787v1

    • [cs.IT]The parameters of a family of linear codes
    Weiqiong Wang, Yan Wang
    http://arxiv.org/abs/1903.03720v1

    • [cs.LG]Accelerating Minibatch Stochastic Gradient Descent using Typicality Sampling
    Xinyu Peng, Li Li, Fei-Yue Wang
    http://arxiv.org/abs/1903.04192v1

    • [cs.LG]Algorithms for an Efficient Tensor Biclustering
    Andriantsiory Dina Faneva, Mustapha Lebbah, Hanane Azzag, Gaël Beck
    http://arxiv.org/abs/1903.04042v1

    • [cs.LG]Based on Graph-VAE Model to Predict Student's Score
    Yang Zhang, Mingming Lu
    http://arxiv.org/abs/1903.03609v1

    • [cs.LG]Continual Learning via Neural Pruning
    Siavash Golkar, Michael Kagan, Kyunghyun Cho
    http://arxiv.org/abs/1903.04476v1

    • [cs.LG]Deep Recurrent Q-Learning vs Deep Q-Learning on a simple Partially Observable Markov Decision Process with Minecraft
    Clément Romac, Vincent Béraud
    http://arxiv.org/abs/1903.04311v1

    • [cs.LG]Deep learning for molecular generation and optimization - a review of the state of the art
    Daniel C. Elton, Zois Boukouvalas, Mark D. Fuge, Peter W. Chung
    http://arxiv.org/abs/1903.04388v1

    • [cs.LG]Fair Logistic Regression: An Adversarial Perspective
    Ashkan Rezaei, Rizal Fathony, Omid Memarrast, Brian Ziebart
    http://arxiv.org/abs/1903.03910v1

    • [cs.LG]Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation
    Cong Xie, Sanmi Koyejo, Indranil Gupta
    http://arxiv.org/abs/1903.03936v1

    • [cs.LG]Fisher-Bures Adversary Graph Convolutional Networks
    Ke Sun, Piotr Koniusz, Jeff Wang
    http://arxiv.org/abs/1903.04154v1

    • [cs.LG]GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks
    Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
    http://arxiv.org/abs/1903.03894v1

    • [cs.LG]Gradient Descent based Optimization Algorithms for Deep Learning Models Training
    Jiawei Zhang
    http://arxiv.org/abs/1903.03614v1

    • [cs.LG]Hybrid Reinforcement Learning with Expert State Sequences
    Xiaoxiao Guo, Shiyu Chang, Mo Yu, Gerald Tesauro, Murray Campbell
    http://arxiv.org/abs/1903.04110v1

    • [cs.LG]InceptionGCN: Receptive Field Aware Graph Convolutional Network for Disease Prediction
    Anees Kazi, Shayan shekarforoush, S. Arvind krishna, Hendrik Burwinkel, Gerome Vivar, Karsten Kortuem, Seyed-Ahmad Ahmadi, Shadi Albarqouni, Nassir Navab
    http://arxiv.org/abs/1903.04233v1

    • [cs.LG]Interpreting and Understanding Graph Convolutional Neural Network using Gradient-based Attribution Methods
    Shangsheng Xie, Mingming Lu
    http://arxiv.org/abs/1903.03768v1

    • [cs.LG]Labeler-hot Detection of EEG Epileptic Transients
    Lukasz Czekaj, Wojciech Ziembla, Pawel Jezierski, Pawel Swiniarski, Anna Kolodziejak, Pawel Ogniewski, Pawel Niedbalski, Anna Jezierska, Daniel Wesierski
    http://arxiv.org/abs/1903.04337v1

    • [cs.LG]Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games
    Chun Kai Ling, Fei Fang, J. Zico Kolter
    http://arxiv.org/abs/1903.04101v1

    • [cs.LG]Learning Quantum Graphical Models using Constrained Gradient Descent on the Stiefel Manifold
    Sandesh Adhikary, Siddarth Srinivasan, Byron Boots
    http://arxiv.org/abs/1903.03730v1

    • [cs.LG]Machine Learning Based Prediction and Classification of Computational Jobs in Cloud Computing Centers
    Zheqi Zhu, Pingyi Fan
    http://arxiv.org/abs/1903.03759v1

    • [cs.LG]Multinomial Random Forests: Fill the Gap between Theoretical Consistency and Empirical Soundness
    Yiming Li, Jiawang Bai, Qingtao Tang, Yong Jiang, Chun Li, Shutao Xia
    http://arxiv.org/abs/1903.04003v1

    • [cs.LG]Non-Negative Kernel Sparse Coding for the Classification of Motion Data
    Babak Hosseini, Felix Hülsmann, Mario Botsch, Barbara Hammer
    http://arxiv.org/abs/1903.03891v1

    • [cs.LG]One-Pass Sparsified Gaussian Mixtures
    Eric Kightley, Stephen Becker
    http://arxiv.org/abs/1903.04056v1

    • [cs.LG]Optimal Collusion-Free Teaching
    David Kirkpatrick, Hans U. Simon, Sandra Zilles
    http://arxiv.org/abs/1903.04012v1

    • [cs.LG]Revisiting clustering as matrix factorisation on the Stiefel manifold
    Stéphane Chrétien, Benjamin Guedj
    http://arxiv.org/abs/1903.04479v1

    • [cs.LG]Robust Influence Maximization for Hyperparametric Models
    Dimitris Kalimeris, Gal Kaplun, Yaron Singer
    http://arxiv.org/abs/1903.03746v1

    • [cs.LG]Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
    Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, Ann Nowé
    http://arxiv.org/abs/1903.04193v1

    • [cs.LG]Scaling up deep neural networks: a capacity allocation perspective
    Jonathan Donier
    http://arxiv.org/abs/1903.04455v1

    • [cs.LG]Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks
    Kuan Fang, Alexander Toshev, Li Fei-Fei, Silvio Savarese
    http://arxiv.org/abs/1903.03878v1

    • [cs.LG]Similarity Learning via Kernel Preserving Embedding
    Zhao Kang, Yiwei Lu, Yuanzhang Su, Changsheng Li, Zenglin Xu
    http://arxiv.org/abs/1903.04235v1

    • [cs.LG]Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
    Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, Sergey Levine
    http://arxiv.org/abs/1903.03698v1

    • [cs.LG]SleepNet: Automated Sleep Disorder Detection via Dense Convolutional Neural Network
    Bahareh Pourbabaee, Matthew Howe-Patterson, Matthew Patterson, Frederic Benard
    http://arxiv.org/abs/1903.04377v1

    • [cs.LG]Stochastic Incremental Algorithms for Optimal Transport with SON Regularizer
    Ashkan Panahi, Erik Thiel, Morteza H. Cheraghani, Devdatt Dubhashi
    http://arxiv.org/abs/1903.03850v1

    • [cs.LG]Successive Over Relaxation Q-Learning
    Chandramouli Kamanchi, Raghuram Bharadwaj Diddigi, Shalabh Bhatnagar
    http://arxiv.org/abs/1903.03812v1

    • [cs.LG]Two-Hop Walks Indicate PageRank Order
    Ying Tang
    http://arxiv.org/abs/1903.03756v1

    • [cs.NE]A Genetic Programming System with an Epigenetic Mechanism for Traffic Signal Control
    Esteban Ricalde
    http://arxiv.org/abs/1903.03854v1

    • [cs.NE]A Spiking Network for Inference of Relations Trained with Neuromorphic Backpropagation
    Johannes C. Thiele, Olivier Bichler, Antoine Dupret, Sergio Solinas, Giacomo Indiveri
    http://arxiv.org/abs/1903.04341v1

    • [cs.NE]DeepPool: Distributed Model-free Algorithm for Ride-sharing using Deep Reinforcement Learning
    Abubakr Alabbasi, Arnob Ghosh, Vaneet Aggarwal
    http://arxiv.org/abs/1903.03882v1

    • [cs.OH]Pragmatic inference and visual abstraction enable contextual flexibility during visual communication
    Judith Fan, Robert Hawkins, Mike Wu, Noah Goodman
    http://arxiv.org/abs/1903.04448v1

    • [quant-ph]Quantifying the magic of quantum channels
    Xin Wang, Mark M. Wilde, Yuan Su
    http://arxiv.org/abs/1903.04483v1

    • [stat.AP]Better-than-expert detection of early coronary artery occlusion from 12 lead electrocardiograms using deep learning
    Rob Brisk, Raymond R Bond. Dewar D Finlay, James McLaughlin, Alicja Piadlo, Stephen J Leslie, David E Gossman, Ian B A Menown, David J McEneaney
    http://arxiv.org/abs/1903.04421v1

    • [stat.AP]Retailer response to wholesale stockouts
    George Liberopoulos, Isidoros Tsikis
    http://arxiv.org/abs/1903.04035v1

    • [stat.AP]Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics
    Oliver M. Crook, Kathryn S. Lilley, Laurent Gatto, Paul D. W. Kirk
    http://arxiv.org/abs/1903.02909v2

    • [stat.ME]A Potential Outcomes Calculus for Identifying Conditional Path-Specific Effects
    Daniel Malinsky, Ilya Shpitser, Thomas Richardson
    http://arxiv.org/abs/1903.03662v1

    • [stat.ME]A synthetic likelihood-based Laplace approximation for efficient design of biological processes
    Mahasen Dehideniya, Antony M. Overstall, Chris C. Drovandi, James M. McGree
    http://arxiv.org/abs/1903.04168v1

    • [stat.ME]Adaptive-to-model hybrid of tests for regressions
    Lingzhu Li, Xuehu Zhu, Lixing Zhu
    http://arxiv.org/abs/1903.03742v1

    • [stat.ME]Confidence Interval for Quantile Ratio of the Dagum Distribution
    Alina Jędrzejczak, Dorota Pekasiewicz, Wojciech Zieliński
    http://arxiv.org/abs/1903.04223v1

    • [stat.ME]Distributed Feature Screening via Componentwise Debiasing
    Xingxiang Li, Runze Li, Zhiming Xia, Chen Xu
    http://arxiv.org/abs/1903.03810v1

    • [stat.ME]Estimating Individualized Decision Rules with Tail Controls
    Zhengling Qi, Jong-Shi Pang, Yufeng Liu
    http://arxiv.org/abs/1903.04367v1

    • [stat.ME]Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach
    Zhe Fei, Yi Li
    http://arxiv.org/abs/1903.04408v1

    • [stat.ME]Lasso tuning through the flexible-weighted bootstrap
    Ellis Patrick, Samuel Mueller
    http://arxiv.org/abs/1903.03935v1

    • [stat.ME]Streamlined Variational Inference for Higher Level Group-Specific Curve Models
    M. Menictas, T. H. Nolan, D. G. Simpson, M. P. Wand
    http://arxiv.org/abs/1903.04043v1

    • [stat.ME]The Shortest Confidence Interval for the Ratio of Quantiles of the Dagum Distribution
    Alina Jȩdrzejczak, Dorota Pekasiewicz, Wojciech Zieliński
    http://arxiv.org/abs/1903.04226v1

    • [stat.ME]Transporting stochastic direct and indirect effects to new populations
    Kara E Rudolph, Jonathan Levy, Mark J van der Laan
    http://arxiv.org/abs/1903.03690v1

    • [stat.ME]Two paradoxical results in linear models: the variance inflation factor and the analysis of covariance
    Peng Ding
    http://arxiv.org/abs/1903.03883v1

    • [stat.ML]β^3-IRT: A New Item Response Model and its Applications
    Yu Chen, Telmo Silva Filho, Ricardo B. C. Prudêncio, Tom Diethe, Peter Flach
    http://arxiv.org/abs/1903.04016v1

    • [stat.ML]A cross-center smoothness prior for variational Bayesian brain tissue segmentation
    Wouter M. Kouw, Silas N. Ørting, Jens Petersen, Kim S. Pedersen, Marleen de Bruijne
    http://arxiv.org/abs/1903.04191v1

    • [stat.ML]Bayesian Allocation Model: Inference by Sequential Monte Carlo for Nonnegative Tensor Factorizations and Topic Models using Polya Urns
    Ali Taylan Cemgil, Mehmet Burak Kurutmaz, Sinan Yildirim, Melih Barsbey, Umut Simsekli
    http://arxiv.org/abs/1903.04478v1

    • [stat.ML]Functional Principal Component Analysis for Extrapolating Multi-stream Longitudinal Data
    Seokhyun Chung, Raed Kontar
    http://arxiv.org/abs/1903.03871v1

    • [stat.ML]Interpolation Consistency Training for Semi-Supervised Learning
    Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz
    http://arxiv.org/abs/1903.03825v1

    • [stat.ML]Likelihood-free MCMC with Approximate Likelihood Ratios
    Joeri Hermans, Volodimir Begy, Gilles Louppe
    http://arxiv.org/abs/1903.04057v1

    • [stat.ML]Manifold Preserving Adversarial Learning
    Ousmane Amadou Dia, Elnaz Barshan, Reza Babanezhad
    http://arxiv.org/abs/1903.03905v1

    • [stat.ML]Orthogonal Estimation of Wasserstein Distances
    Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamas Sarlos, Adrian Weller
    http://arxiv.org/abs/1903.03784v1

    • [stat.ML]Rectangular Bounding Process
    Xuhui Fan, Bin Li, Scott Anthony Sisson
    http://arxiv.org/abs/1903.03906v1

    • [stat.ML]Shapley regressions: A framework for statistical inference on machine learning models
    Andreas Joseph
    http://arxiv.org/abs/1903.04209v1

    • [stat.ML]Sparse Grouped Gaussian Processes for Solar Power Forecasting
    Astrid Dahl, Edwin V. Bonilla
    http://arxiv.org/abs/1903.03986v1

    • [stat.ML]Uncertainty Propagation in Deep Neural Network Using Active Subspace
    Weiqi Ji, Zhuyin Ren, Chung K. Law
    http://arxiv.org/abs/1903.03989v1

    • [stat.ML]Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
    Xubo Yue, Raed Kontar
    http://arxiv.org/abs/1903.03867v1

    相关文章

      网友评论

          本文标题:今日学术视野(2019.3.13)

          本文链接:https://www.haomeiwen.com/subject/vkeapqtx.html