美文网首页
Linux内核中的radix tree小记

Linux内核中的radix tree小记

作者: Jiafu | 来源:发表于2017-12-23 22:50 被阅读0次

    基树

    内核中的基树的节点,使用struct radix_tree_node来表示,其源代码如下:

    struct radix_tree_node {
        unsigned int    height;     /* Height from the bottom */
        unsigned int    count;      /* 子节点的个数 */
        union {
            struct radix_tree_node *parent; /* Used when ascending tree */
            struct rcu_head rcu_head;   /* Used when freeing node */
        };
        void __rcu  *slots[RADIX_TREE_MAP_SIZE];
        unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
    };
    
    /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
    struct radix_tree_root {
        unsigned int        height;
        gfp_t           gfp_mask;
        struct radix_tree_node  __rcu *rnode;
    };
    
    

    slots是指向各个孩子节点的指针,RADIX_TREE_MAP_SIZE通常为64(跟宏定义有关,我们以64为例来说明)。

    tags顾名思义是标签,代表此节点的所有孩子节点的标签。tags是二维数组,RADIX_TREE_MAX_TAGS定义为3,即最多支持3种标签。RADIX_TREE_TAG_LONGS的长度使得可以放下所有子节点的tag(一个tag占1位)。

    一个典型的基树如下图所示:


    height=3的基树

    不得不说,本来简单的数据结构,加上了RCU的机制后,总是有点难以理解。

    初始化

    跟Linux内核中其它的数据结构类似,两种初始化方式:

    #define RADIX_TREE(name, mask) \
        struct radix_tree_root name = RADIX_TREE_INIT(mask)
    
    #define INIT_RADIX_TREE(root, mask)                 \
    do {                                    \
        (root)->height = 0;                     \
        (root)->gfp_mask = (mask);                  \
        (root)->rnode = NULL;                       \
    } while (0)
    

    查找

    /*
     * is_slot == 1 : search for the slot.
     * is_slot == 0 : search for the node.
     */
    static void *radix_tree_lookup_element(struct radix_tree_root *root,
                    unsigned long index, int is_slot)
    {
        unsigned int height, shift;
        struct radix_tree_node *node, **slot;
    
        node = rcu_dereference_raw(root->rnode);
        if (node == NULL)
            return NULL;
    
        if (!radix_tree_is_indirect_ptr(node)) {
            if (index > 0)
                return NULL;
            return is_slot ? (void *)&root->rnode : node;
        }
        node = indirect_to_ptr(node);
    
        height = node->height;
        if (index > radix_tree_maxindex(height))
            return NULL;
    
        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
    
        do {
            slot = (struct radix_tree_node **)
                (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
            node = rcu_dereference_raw(*slot);
            if (node == NULL)
                return NULL;
    
            shift -= RADIX_TREE_MAP_SHIFT;
            height--;
        } while (height > 0);
    
        return is_slot ? (void *)slot : indirect_to_ptr(node);
    }
    
    /**
     *  radix_tree_lookup    -    perform lookup operation on a radix tree
     *  @root:      radix tree root
     *  @index:     index key
     *
     *  Lookup the item at the position @index in the radix tree @root.
     *
     *  This function can be called under rcu_read_lock, however the caller
     *  must manage lifetimes of leaf nodes (eg. RCU may also be used to free
     *  them safely). No RCU barriers are required to access or modify the
     *  returned item, however.
     */
    void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
    {
        return radix_tree_lookup_element(root, index, 0);
    }
    
    

    查找的过程,就是把index从高位开始,每6位(以64位机器为例)为一个单位,分隔成一个个的slot index,然后从radix树的根往下搜索的过程,整体还是比较好理解的。暂时忽略indirect_to_prt,rcu_dereference_raw这几个函数,这不影响对整体流程的理解。

    插入

    /**
     *  radix_tree_insert    -    insert into a radix tree
     *  @root:      radix tree root
     *  @index:     index key
     *  @item:      item to insert
     *
     *  Insert an item into the radix tree at position @index.
     */
    int radix_tree_insert(struct radix_tree_root *root,
                unsigned long index, void *item)
    {
        struct radix_tree_node *node = NULL, *slot;
        unsigned int height, shift;
        int offset;
        int error;
    
        BUG_ON(radix_tree_is_indirect_ptr(item));
    
        /* Make sure the tree is high enough.  */
        if (index > radix_tree_maxindex(root->height)) {
            error = radix_tree_extend(root, index);
            if (error)
                return error;
        }
    
        slot = indirect_to_ptr(root->rnode);
    
        height = root->height;
        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
    
        offset = 0;         /* uninitialised var warning */
        while (height > 0) {
            if (slot == NULL) {
                /* Have to add a child node.  */
                if (!(slot = radix_tree_node_alloc(root)))
                    return -ENOMEM;
                slot->height = height;
                slot->parent = node;
                if (node) {
                    rcu_assign_pointer(node->slots[offset], slot);
                    node->count++;
                } else
                    rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
            }
    
            /* Go a level down */
            offset = (index >> shift) & RADIX_TREE_MAP_MASK;
            node = slot;
            slot = node->slots[offset];
            shift -= RADIX_TREE_MAP_SHIFT;
            height--;
        }
    
        if (slot != NULL)
            return -EEXIST;
    
        if (node) {
            node->count++;
            rcu_assign_pointer(node->slots[offset], item);
            BUG_ON(tag_get(node, 0, offset));
            BUG_ON(tag_get(node, 1, offset));
        } else {
            rcu_assign_pointer(root->rnode, item);
            BUG_ON(root_tag_get(root, 0));
            BUG_ON(root_tag_get(root, 1));
        }
    
        return 0;
    }
    

    插入的过程跟查找的过程非常相似其实,就是沿着树从上到下地找,某个位置没有元素就创建元素,直到出错或者把元素放到指定的slot中。

    Tag

    内核的radix tree支持Tag功能,就是给某个元素打一个tag。这个tag会影响该元素到基树根上所有元素。这样通过查看根元素是否有这个tag,就能判断根元素下的子元素中是否存在这种tag的元素。另外内核的基树提供了迭代所有设置过tag的元素的方法:radix_tree_for_each_tagged。

    相关文章

      网友评论

          本文标题:Linux内核中的radix tree小记

          本文链接:https://www.haomeiwen.com/subject/vkhcgxtx.html