美文网首页
Pytorch_基于预训练的ResNet模型训练自己的分类器

Pytorch_基于预训练的ResNet模型训练自己的分类器

作者: xieyan0811 | 来源:发表于2020-04-11 13:07 被阅读0次
    1. 加载数据
    import os
    import torch.utils.data as data
    import torch
    import torch.optim as optim
    import torch.nn as nn
    from torch.optim import lr_scheduler
    from torchvision import datasets, models, transforms
    from PIL import Image
    import time
    import copy
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline
    
    NUM_EPOCH=5 # 默认迭代次数
    batch_size = 100 # 约占 10G 显存
    device = torch.device('cuda:0') # 默认使用 GPU
    NUMCLASS = 4 # 类别数
    
    def default_loader(path):
        with open(path, 'rb') as f:
            with Image.open(f) as img:
                return img.convert('RGB')
    
    class CustomImageLoader(data.Dataset): # 定义自己的数据类
        ##自定义类型数据输入
        def __init__(self, img_path, txt_path, dataset = '', data_transforms=None, loader = default_loader):
            im_list = []
            im_labels = []
            with open(txt_path, 'r') as files:
                for line in files:
                    items = line.split()
                    if items[0][0] == '/':
                        imname = line.split()[0][1:]
                    else:
                        imname = line.split()[0]
                    im_list.append(os.path.join(img_path, imname))
                    im_labels.append(int(items[1]))
            self.imgs = im_list
            self.labels = im_labels
            self.data_tranforms = data_transforms
            self.loader = loader
            self.dataset = dataset
     
        def __len__(self):
            return len(self.imgs)
     
        def __getitem__(self, item):
            img_name = self.imgs[item]
            label = self.labels[item]
            img = self.loader(img_name)
     
            if self.data_tranforms is not None:
                try:
                    img = self.data_tranforms[self.dataset](img)
                except:
                    print("Cannot transform image: {}".format(img_name))
            return img, label
        
    data_tranforms={
        'Train':transforms.Compose([
            transforms.RandomResizedCrop(224), # 随机裁剪为不同的大小和宽高比,缩放所为制定的大小
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) # 各通道颜色的均值和方差,用于归一化
        ]),
        'Test':transforms.Compose([
            transforms.Resize(256), # 变换大小
            transforms.CenterCrop(224), # 中心裁剪
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
        ])
    }
    
    image_datasets = {x : CustomImageLoader('/', # 默认目录为根目录,配搭文件中使用全路径
                                            txt_path=('/tmp/'+x+'Images.label'), # 标签文件
                                            data_transforms=data_tranforms,
                                            dataset=x) for x in ['Train', 'Test']
                      }
     
    dataloders = {x: torch.utils.data.DataLoader(image_datasets[x],
                                                     batch_size=batch_size,
                                                     shuffle=True) for x in ['Train', 'Test']}
    
    dataset_sizes = {x: len(image_datasets[x]) for x in ['Train', 'Test']} # 数据大小
    
    1. 训练模型
    def train_model(model, crtiation, optimizer,schedular, num_epochs=NUM_EPOCH):
        begin_time = time.time()
        best_weights = copy.deepcopy(model.state_dict())#copy the weights from the model
        best_acc = 0.0
        arr_acc = [] # 用于作图
     
        for epoch in range(num_epochs):
            print("-*-" * 20)
            item_acc = []
            for phase in ['Train', 'Test']:
                if phase=='Train':
                    schedular.step()
                    model.train()
                else:
                    model.eval()
                running_loss = 0.0
                running_acc = 0.0
     
                for images, labels in dataloders[phase]:
                    images.to(device)
                    labels.to(device)
                    optimizer.zero_grad()
     
                    with torch.set_grad_enabled(phase=='Train'):
                        opt = model(images.cuda())
                        # opt = model(images)
                        _,pred = torch.max(opt,1)
                        labels = labels.cuda()
                        loss = crtiation(opt, labels)
                        if phase=='Train':
                            loss.backward()
                            optimizer.step()
     
                    running_loss += loss.item()*images.size(0)
                    running_acc += torch.sum(pred==labels)
                epoch_loss = running_loss/dataset_sizes[phase]
                epoch_acc = running_acc.double()/dataset_sizes[phase]
                print('epoch={}, Phase={}, Loss={:.4f}, ACC:{:.4f}'.format(epoch, phase, 
                                                                           epoch_loss, epoch_acc))
                item_acc.append(epoch_acc)
     
                if phase == 'Test' and epoch_acc>best_acc:
                    # Upgrade the weights
                    best_acc=epoch_acc
                    best_weights = copy.deepcopy(model.state_dict())
            arr_acc.append(item_acc)
        time_elapes = time.time() - begin_time
            time_elapes // 60, time_elapes % 60
        ))
        print('Best Val ACC: {:}'.format(best_acc))
     
        model.load_state_dict(best_weights) # 保存最好的参数
        return models,arr_acc
    
    if __name__ == '__main__':
        model_ft = models.resnet50(pretrained=True) 
        num_fits = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_fits, NUMCLASS) # 替换最后一个全连接层
        model_ft = model_ft.to(device)
        model_ft.cuda()
        criterion = nn.CrossEntropyLoss()
        optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
        exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)
        model_ft,arr_acc = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, 20)
    
    1. 绘图
    ll = np.array(arr_acc)
    plt.plot(ll[:,0])
    plt.plot(ll[:,1])
    

    相关文章

      网友评论

          本文标题:Pytorch_基于预训练的ResNet模型训练自己的分类器

          本文链接:https://www.haomeiwen.com/subject/vklymhtx.html