美文网首页
MongoDB 操作符 $unwind 展开数组(agregat

MongoDB 操作符 $unwind 展开数组(agregat

作者: Jaxh | 来源:发表于2021-09-25 16:33 被阅读0次

定义

$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。

语法

您可以传递字段路径操作数或文档操作数来展开数组字段。

字段路径

您可以将数组字段路径传递给 $unwind。使用此语法时,如果字段值为 null、缺失或空数组,则 $unwind 不会输出文档。

{ $unwind: <field path> }

指定字段路径时,在字段名称前加上美元符号 $ 并用引号引起来。

带选项的文档

您可以将文档传递给 $unwind 以指定各种行为选项。

{
  $unwind:
    {
      path: <field path>,
      includeArrayIndex: <string>,
      preserveNullAndEmptyArrays: <boolean>
    }
}
字段 类型 描述
path string 数组字段的字段路径。要指定字段路径,请在字段名称前加上美元符号 $ 并用引号括起来。
includeArrayIndex string 可选的。保存元素数组索引的新字段的名称。名称不能以美元符号 $ 开头。
preserveNullAndEmptyArrays boolen 可选的。 如果为 true,如果路径为空、缺失或空数组,则 $unwind 输出文档。 如果为 false,如果 path 为空、缺失或空数组,则 $unwind 不会输出文档。 默认值为false

例子

展开数组

插入数据

db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })

使用$unwind展开

db.inventory.aggregate( [ { $unwind : "$sizes" } ] )

该操作返回以下结果:

{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

使用includeArrayIndexpreserveNullAndEmptyArrays

示例数据

db.inventory2.insertMany([
  { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
  { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
  { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
  { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
  { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

以下$unwind操作是等效的,并为sizes字段中的每个元素返回一个文档。如果sizes 字段未解析为数组但不丢失、为空或空数组,$unwind则将非数组操作数视为单元素数组。

db.inventory2.aggregate( [ { $unwind: "$sizes" } ] )
db.inventory2.aggregate( [ { $unwind: { path: "$sizes" } } ] )

该操作返回以下文档:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }

includeArrayIndex

以下$unwind操作使用 includeArrayIndex选项在输出中包含数组索引。

db.inventory2.aggregate( [
  {
    $unwind:
      {
        path: "$sizes",
        includeArrayIndex: "arrayIndex"
      }
   }])

该操作展开sizes数组并在新arrayIndex字段中包含数组索引的数组索引。如果该sizes 字段未解析为数组但不缺失、为 null 或空数组,则该arrayIndex字段为null
操作返回结果:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }

preserveNullAndEmptyArrays

以下$unwind操作使用 preserveNullAndEmptyArrays 选项来包含sizes字段为空、缺失或空数组的文档。

db.inventory2.aggregate( [
   { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }
] )

输出包括sizes字段为空、缺失或空数组的文档:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }

按展开值分组

示例数据:

db.inventory2.insertMany([
  { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
  { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
  { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
  { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
  { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

以下管道展开sizes数组并按展开大小值对结果文档进行分组:

db.inventory2.aggregate( [
   // First Stage
   {
     $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true }
   },
   // Second Stage
   {
     $group:
       {
         _id: "$sizes",
         averagePrice: { $avg: "$price" }
       }
   },
   // Third Stage
   {
     $sort: { "averagePrice": -1 }
   }
] )

第一阶段:
$unwind阶段为sizes数组中的每个元素输出一个新文档。该阶段使用 preserveNullAndEmptyArrays 选项在输出中包含sizes字段缺失、为空或空数组的文档。此阶段将以下文档传递到下一阶段:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }

第二阶段:
$group阶段将文档分组sizes 并计算每个尺寸的平均价格。此阶段将以下文档传递到下一阶段:

{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }

第三阶段:
$sort阶段按averagePrice降序对文档进行排序。该操作返回以下结果:

{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }

也可以看看:

展开嵌入式数组

mongosh中,创建一个sales使用以下文档命名的示例集合 :

db.sales.insertMany([
  {
    _id: "1",
    "items" : [
     {
      "name" : "pens",
      "tags" : [ "writing", "office", "school", "stationary" ],
      "price" : NumberDecimal("12.00"),
      "quantity" : NumberInt("5")
     },
     {
      "name" : "envelopes",
      "tags" : [ "stationary", "office" ],
      "price" : NumberDecimal("1.95"),
      "quantity" : NumberInt("8")
     }
    ]
  },
  {
    _id: "2",
    "items" : [
     {
      "name" : "laptop",
      "tags" : [ "office", "electronics" ],
      "price" : NumberDecimal("800.00"),
      "quantity" : NumberInt("1")
     },
     {
      "name" : "notepad",
      "tags" : [ "stationary", "school" ],
      "price" : NumberDecimal("14.95"),
      "quantity" : NumberInt("3")
     }
    ]
  }
])

以下操作按标签对出售的商品进行分组,并计算每个标签的总销售额。

db.sales.aggregate([
  // First Stage
  { $unwind: "$items" },

  // Second Stage
  { $unwind: "$items.tags" },

  // Third Stage
  {
    $group:
      {
        _id: "$items.tags",
        totalSalesAmount:
          {
            $sum: { $multiply: [ "$items.price", "$items.quantity" ] }
          }
      }
  }
])

第一阶段:
第一阶段$unwinditems数组中的每个元素输出一个新文档:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } }

第二阶段:
第二阶段$unwinditems.tags数组中的每个元素输出一个新文档:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } }

第三阶段:
该阶段$group按标签对文档进行分组,并计算带有每个标签的商品的总销售额:

{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }
{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") }
{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }
{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }
{ "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }

也可以看看:

参考

https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/

相关文章

网友评论

      本文标题:MongoDB 操作符 $unwind 展开数组(agregat

      本文链接:https://www.haomeiwen.com/subject/vmuxnltx.html