1.引用包
org.apache.commons:commons-math3:3.6.1
2.测试类:
@Test
public void testMath(){
double[] values =new double[] {0.33, 1.33,0.27333, 0.3, 0.501,
0.444, 0.44, 0.34496, 0.33,0.3, 0.292, 0.667 };
SummaryStatistics summaryStatistics =new SummaryStatistics();
for(double data:values){
summaryStatistics.addValue(data);
}
System.out.println(summaryStatistics.toString());
Min min =new Min();
Max max =new Max();
Mean mean =new Mean(); // 算术平均值
Product product =new Product();//乘积
Sum sum =new Sum();
Variance variance =new Variance();//方差
System.out.println("min: " +min.evaluate(values));
System.out.println("max: " +max.evaluate(values));
System.out.println("mean: " +mean.evaluate(values));
System.out.println("product:" + product.evaluate(values));
System.out.println("sum: " +sum.evaluate(values));
System.out.println("variance:" + variance.evaluate(values));
Percentile percentile =new Percentile(); // 百分位数
GeometricMean geoMean =new GeometricMean(); // 几何平均数,n个正数的连乘积的n次算术根叫做这n个数的几何平均数
Skewness skewness =new Skewness(); //Skewness();
Kurtosis kurtosis =new Kurtosis(); //Kurtosis,峰度
SumOfSquares sumOfSquares =new SumOfSquares(); // 平方和
StandardDeviation StandardDeviation =new StandardDeviation();//标准差
System.out.println("80 percentilevalue: "
+ percentile.evaluate(values,80.0));
System.out.println("geometricmean: " + geoMean.evaluate(values));
System.out.println("skewness:" + skewness.evaluate(values));
System.out.println("kurtosis:" + kurtosis.evaluate(values));
System.out.println("sumOfSquares:" + sumOfSquares.evaluate(values));
System.out.println("StandardDeviation: " +StandardDeviation.evaluate(values));
System.out.println("-------------------------------------");
// Create a real matrix with two rowsand three columns
double[][] matrixData = { {1d,2d,3d},{2d,5d,3d}};
RealMatrix m =new Array2DRowRealMatrix(matrixData);
System.out.println(m);
// One more with three rows, twocolumns
double[][] matrixData2 = { {1d,2d},{2d,5d}, {1d, 7d}};
RealMatrix n =new Array2DRowRealMatrix(matrixData2);
// Note: The constructor copies the input double[][] array.
// Now multiply m by n
RealMatrix p = m.multiply(n);
System.out.println("p:"+p);
System.out.println(p.getRowDimension()); // 2
System.out.println(p.getColumnDimension()); // 2
// Invert p, using LUdecomposition
RealMatrix pInverse =new LUDecomposition(p).getSolver().getInverse();
System.out.println(pInverse);
}
网友评论