Hadoop2.X后可以划分为三部分:HDFS、MapReduce和Yarn,本篇主要看一下HDFS。
架构图
-
初始化FileSystem,客户端调用create()来创建文件
-
FileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件,元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
-
FileSystem返回DFSOutputStream,客户端用于写数据,客户端开始写入数据。
-
DFSOutputStream将数据分成块,写入data queue。data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
-
DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
-
当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
-
如果数据节点在写入的过程中失败,关闭pipeline,将ack queue中的数据块放入data queue的开始,当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。
读取文件
-
初始化FileSystem,然后客户端(client)用FileSystem的open()函数打开文件
-
FileSystem用RPC调用元数据节点,得到文件的数据块信息,对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。
-
FileSystem返回FSDataInputStream给客户端,用来读取数据,客户端调用stream的read()函数开始读取数据。
-
DFSInputStream连接保存此文件第一个数据块的最近的数据节点,data从数据节点读到客户端(client)
-
当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。
-
当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。
-
在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。
-
失败的数据节点将被记录,以后不再连接。
SecondNamenode合并流程
在namenode上的edits文件和fsimage进行合并:
-
Secondary NameNode请求NameNode进行edit log的滚动(即创建一个新的edit log),将新的编辑操作记录到新生成的edit log文件;
-
通过http get方式,读取NameNode上的fsimage和edits文件,到Secondary NameNode上;
-
读取fsimage到内存中,即加载fsimage到内存,然后执行edits中所有操作(类似OracleDG,应用redo log),并生成一个新的fsimage文件,即这个检查点被创建;
-
通过http post方式,将新的fsimage文件传送到NameNode;
-
NameNode使用新的fsimage替换原来的fsimage文件,让(1)创建的edits替代原来的edits文件;并且更新fsimage文件的检查点时间。
整个处理过程完成。
Secondary NameNode的处理,是将fsimage和edites文件周期的合并,不会造成nameNode重启时造成长时间不可访问的情况。
网友评论