概述
简而言之,所谓并发编程是指在一台处理器上“同时”处理多个任务。
随着硬件的发展,并发程序变得越来越重要。Web服务器会一次处理成千上万的请求。平板电脑和手机app在渲染用户画面同时还会后台执行各种计算任务和网络请求。即使是传统的批处理问题--读取数据,计算,写输出--现在也会用并发来隐藏掉I/O的操作延迟以充分利用现代计算机设备的多个核心。计算机的性能每年都在以非线性的速度增长。
宏观的并发是指在一段时间内,有多个程序在同时运行。
并发在微观上,是指在同一时刻只能有一条指令执行,但多个程序指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,使多个程序快速交替的执行。
并行和并发
并行(parallel): 指在同一时刻,有多条指令在多个处理器上同时执行。
并发(concurrency): 指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,通过cpu时间片轮转使多个进程快速交替的执行。
常见并发编程技术
1. 进程并发
-
程序和进程
- 程序,是指编译好的二进制文件,在磁盘上,不占用系统资源(cpu、内存、打开的文件、设备、锁....)
- 进程,是一个抽象的概念,与操作系统原理联系紧密。进程是活跃的程序,占用系统资源。在内存中执行。(程序运行起来,产生一个进程)
-
进程状态
进程基本的状态有5种。分别为初始态,就绪态,运行态,挂起态与终止态。其中初始态为进程准备阶段,常与就绪态结合来看。
-
进程并发
在使用进程 实现并发时会出现什么问题呢?- 系统开销比较大,占用资源比较多,开启进程数量比较少。
- 在unix/linux系统下,还会产生“孤儿进程”和“僵尸进程”。
通过前面查看操作系统的进程信息,我们知道在操作系统中,可以产生很多的进程。在unix/linux系统中,正常情况下,子进程是通过父进程fork创建的,子进程再创建新的进程。
并且父进程永远无法预测子进程 到底什么时候结束。 当一个 进程完成它的工作终止之后,它的父进程需要调用系统调用取得子进程的终止状态。
孤儿进程:父进程先于子进程结束,则子进程成为孤儿进程,子进程的父进程成为init进程,称为init进程领养孤儿进程。
僵尸进程: 进程终止,父进程尚未回收,子进程残留资源(PCB)存放于内核中,变成僵尸(Zombie)进程。
Windows下的进程和Linux下的进程是不一样的,它比较懒惰,从来不执行任何东西,只是为线程提供执行环境。然后由线程负责执行包含在进程的地址空间中的代码。当创建一个进程的时候,操作系统会自动创建这个进程的第一个线程,成为主线程。
2. 线程并发
-
什么是线程?
进程和线程.png
LWP:light weight process 轻量级的进程,本质仍是进程 (Linux下)
进程:独立地址空间,拥有PCB,最小分配资源单位,可看成是只有一个线程的进程。
线程: 最小的执行单位,有独立的PCB,但没有独立的地址空间(共享)
区别:在于是否共享地址空间。独居(进程);合租(线程)。
Windows系统下,可以直接忽略进程的概念,只谈线程。因为线程是最小的执行单位,是被系统独立调度和分派的基本单位。而进程只是给线程提供执行环境。 -
线程同步
同步即协同步调,按预定的先后次序运行。线程同步,指一个线程发出某一功能调用时,在没有得到结果之前,该调用不返回。同时其它线程为保证数据一致性,不能调用该功能。
线程不同步产生的现象叫做“与时间有关的错误”(time related)。为了避免这种数据混乱,线程需要同步。
“同步”的目的,是为了避免数据混乱,解决与时间有关的错误。实际上,不仅线程间需要同步,进程间、信号间等等都需要同步机制。
因此,所有“多个控制流,共同操作一个共享资源”的情况,都需要同步。
-
互斥量mutex
Linux中提供一把互斥锁mutex(也称之为互斥量)。
每个线程在对资源操作前都尝试先加锁,成功加锁才能操作,操作结束解锁。
资源还是共享的,线程间也还是竞争的,但通过“锁”就将资源的访问变成互斥操作,而后与时间有关的错误也不会再产生了。
同步锁.png但,应注意:同一时刻,只能有一个线程持有该锁。
当A线程对某个全局变量加锁访问,B在访问前尝试加锁,拿不到锁,B阻塞。C线程不去加锁,而直接访问该全局变量,依然能够访问,但会出现数据混乱。
所以,互斥锁实质上是操作系统提供的一把“建议锁”(又称“协同锁”),建议程序中有多线程访问共享资源的时候使用该机制。但,并没有强制限定。
因此,即使有了mutex,如果有线程不按规则来访问数据,依然会造成数据混乱。
-
读写锁
与互斥量类似,但读写锁允许更高的并行性。其特性为:写独占,读共享。读写锁状态:
特别强调:读写锁只有一把,但其具备两种状态:- 读模式下加锁状态 (读锁)
- 写模式下加锁状态 (写锁)
读写锁特性:
- 读写锁是“写模式加锁”时, 解锁前,所有对该锁加锁的线程都会被阻塞。
- 读写锁是“读模式加锁”时, 如果线程以读模式对其加锁会成功;如果线程以写模式加锁会阻塞。
- 读写锁是“读模式加锁”时, 既有试图以写模式加锁的线程,也有试图以读模式加锁的线程。那么读写锁会阻塞随后的读模式锁请求。优先满足写模式锁。读锁、写锁并行阻塞,写锁优先级高。
读写锁也叫共享-独占锁。当读写锁以读模式锁住时,它是以共享模式锁住的;当它以写模式锁住时,它是以独占模式锁住的。写独占、读共享。
读写锁非常适合于对数据结构读的次数远大于写的情况。
3. 协程并发
协程:coroutine。也叫轻量级线程。
与传统的系统级线程和进程相比,协程最大的优势在于“轻量级”。可以轻松创建上万个而不会导致系统资源衰竭。而线程和进程通常很难超过1万个。这也是协程别称“轻量级线程”的原因。
一个线程中可以有任意多个协程,但某一时刻只能有一个协程在运行,多个协程分享该线程分配到的计算机资源。
多数语言在语法层面并不直接支持协程,而是通过库的方式支持,但用库的方式支持的功能也并不完整,比如仅仅提供协程的创建、销毁与切换等能力。如果在这样的轻量级线程中调用一个同步 IO 操作,比如网络通信、本地文件读写,都会阻塞其他的并发执行轻量级线程,从而无法真正达到轻量级线程本身期望达到的目标。
在协程中,调用一个任务就像调用一个函数一样,消耗的系统资源最少!但能达到进程、线程并发相同的效果。
在一次并发任务中,进程、线程、协程均可以实现。从系统资源消耗的角度出发来看,进程相当多,线程次之,协程最少。
Go并发
1. 什么是Goroutine
goroutine是Go并行设计的核心。goroutine说到底其实就是协程,它比线程更小,十几个goroutine可能体现在底层就是五六个线程,Go语言内部帮你实现了这些goroutine之间的内存共享。执行goroutine只需极少的栈内存(大概是4~5KB),当然会根据相应的数据伸缩。也正因为如此,可同时运行成千上万个并发任务。goroutine比thread更易用、更高效、更轻便。
一般情况下,一个普通计算机跑几十个线程就有点负载过大了,但是同样的机器却可以轻松地让成百上千个goroutine进行资源竞争。
2. Goroutine的创建
只需在函数调⽤语句前添加 go 关键字,就可创建并发执⾏单元。开发⼈员无需了解任何执⾏细节,调度器会自动将其安排到合适的系统线程上执行。
在并发编程中,我们通常想将一个过程切分成几块,然后让每个goroutine各自负责一块工作,当一个程序启动时,主函数在一个单独的goroutine中运行,我们叫它main goroutine。新的goroutine会用go语句来创建。而go语言的并发设计,让我们很轻松就可以达成这一目的。
示例代码:
package main
import (
"fmt"
"time"
)
func newTask() {
i := 0
for {
i++
fmt.Printf("new goroutine: i = %d\n", i)
time.Sleep(1 * time.Second) //延时1s
}
}
func main() {
//创建一个 goroutine,启动另外一个任务
go newTask()
i := 0
//main goroutine 循环打印
for {
i++
fmt.Printf("main goroutine: i = %d\n", i)
time.Sleep(1 * time.Second) //延时1s
}
}
3. Goroutine特性
主goroutine退出后,其它的工作goroutine也会自动退出:
package main
import (
"fmt"
"time"
)
func newTask() {
i := 0
for {
i++
fmt.Printf("new goroutine: i = %d\n", i)
time.Sleep(1 * time.Second) //延时1s
}
}
func main() {
//创建一个 goroutine,启动另外一个任务
go newTask()
fmt.Println("main goroutine exit")
}
4. runtime包
-
Gosched
runtime.Gosched() 用于让出CPU时间片,让出当前goroutine的执行权限,调度器安排其他等待的任务运行,并在下次再获得cpu时间轮片的时候,从该出让cpu的位置恢复执行。有点像跑接力赛,A跑了一会碰到代码runtime.Gosched() 就把接力棒交给B了,A歇着了,B继续跑。
示例代码:
package main
import (
"fmt"
"runtime"
)
func main() {
//创建一个goroutine
go func(s string) {
for i := 0; i < 2; i++ {
fmt.Println(s)
}
}("world")
for i := 0; i < 2; i++ {
runtime.Gosched() //import "runtime" 包
/*
屏蔽runtime.Gosched()运行结果如下:
hello
hello
没有runtime.Gosched()运行结果如下:
world
world
hello
hello
*/
fmt.Println("hello")
}
}
以上程序的执行过程如下:
主协程进入main()函数,进行代码的执行。当执行到go func()匿名函数时,创建一个新的协程,开始执行匿名函数中的代码,主协程继续向下执行,执行到runtime.Gosched( )时会暂停向下执行,直到其它协程执行完后,再回到该位置,主协程继续向下执行。
-
Goexit
调用 runtime.Goexit() 将立即终止当前 goroutine 执⾏,调度器确保所有已注册 defer延迟调用被执行。示例代码:
package main
import (
"fmt"
"runtime"
)
func main() {
go func() {
defer fmt.Println("A.defer")
func() {
defer fmt.Println("B.defer")
runtime.Goexit() // 终止当前 goroutine, import "runtime"
fmt.Println("B") // 不会执行
}()
fmt.Println("A") // 不会执行
}() //不要忘记()
//死循环,目的不让主goroutine结束
for {
}
}
-
GOMAXPROCS
调用 runtime.GOMAXPROCS() 用来设置可以并行计算的CPU核数的最大值,并返回之前的值。示例代码:
package main
import (
"fmt"
)
func main() {
//n := runtime.GOMAXPROCS(1) // 第一次 测试
//打印结果:111111111111111111110000000000000000000011111...
n := runtime.GOMAXPROCS(2) // 第二次 测试
//打印结果:010101010101010101011001100101011010010100110...
fmt.Printf("n = %d\n", n)
for {
go fmt.Print(0)
fmt.Print(1)
}
}
在第一次执行runtime.GOMAXPROCS(1) 时,最多同时只能有一个goroutine被执行。所以会打印很多1。过了一段时间后,GO调度器会将其置为休眠,并唤醒另一个goroutine,这时候就开始打印很多0了,在打印的时候,goroutine是被调度到操作系统线程上的。
在第二次执行runtime.GOMAXPROCS(2) 时, 我们使用了两个CPU,所以两个goroutine可以一起被执行,以同样的频率交替打印0和1。
网友评论