编者按:中心极限定理是概率论中的一组重要定理,它的中心思想是无论是什么分布的数据,当我们从中抽取相互独立的随机样本,且采集的样本足够多时,样本均值的分布将收敛于正态分布。为了帮助更多学生理解这个概念,今天,UW iSchool的教师Mike Freeman制作了一些直观的可视化图像,让不少统计学教授大呼要把它们用在课堂上。
本文旨在尽可能直观地解释统计学基础理论之一——中心极限定理的核心概念。通过下文中的一系列动图,读者应该能真正理解这个定理,并从中汲取应用灵感,把它用于决策树等其他项目。
需要注意的是,这里我们不会介绍具体推理过程,所以它不涉及定理解释。
教科书上的中心极限定理
在看可视化前,我们先来回顾一下统计学课程对中心极限定理的描述。
为什么重要
当采样的数量接近无穷大时,我们的抽样分布就会近似于正态分布。这个统计学基础理论意味着我们能根据个体样本推断所有样本。结合正态分布的其他知识,我们可以轻松计算出给定平均值的值的概率。同样的,我们也可以根据观察到的样本均值估计总体均值的概率。
维基百科对于“中心极限定理”的定义:中心极限定理是概率论中的一组定理。中心极限定理说明,在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。
网友评论