@[toc]
1.使用slots
1.1动态绑定class的属性
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:
class Student(object):
pass
然后,尝试给实例绑定一个属性:
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael
还可以尝试给实例绑定一个方法:
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
但是,给一个实例绑定的方法,对另一个实例是不起作用的:
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'
为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score
给class绑定方法后,所有实例均可调用:
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99
通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
1.2使用slots限制属性
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的slots变量,来限制该class实例能添加的属性:
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
然后,我们试试:
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
由于'score'没有被放到slots中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。
使用slots要注意,slots定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999
除非在子类中也定义slots,这样,子类实例允许定义的属性就是自身的slots加上父类的slots。
2.使用@property
2.1方法检验略显麻烦
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:
s = Student()
s.score = 9999
这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:
class Student(object):
def get_score(self):
return self._score
def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。
有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
2.2@property简单实现
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。
2.3@property实现只读属性
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:
class Student(object):
@property
def birth(self):
return self._birth
@birth.setter
def birth(self, value):
self._birth = value
@property
def age(self):
return 2015 - self._birth
上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。
小结
@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。
3.多重继承
3.1为什么需要多重继承
继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。
回忆一下Animal类层次的设计,假设我们要实现以下4种动物:
Dog - 狗狗;
Bat - 蝙蝠;
Parrot - 鹦鹉;
Ostrich - 鸵鸟。
如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:
┌───────────────┐
│ Animal │
└───────────────┘
│
┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Parrot │ │ Ostrich │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:
┌───────────────┐
│ Animal │
└───────────────┘
│
┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Runnable │ │ Flyable │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Ostrich │ │ Parrot │ │ Bat │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
如果要把上面的两种分类都包含进来,我们就得设计更多的层次:
哺乳类:能跑的哺乳类,能飞的哺乳类;
鸟类:能跑的鸟类,能飞的鸟类。
这么一来,类的层次就复杂了:
┌───────────────┐
│ Animal │
└───────────────┘
│
┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ MRun │ │ MFly │ │ BRun │ │ BFly │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
│ │ │ │
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Ostrich │ │ Parrot │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。
3.2实现多重继承
正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:
class Animal(object):
pass
# 大类:
class Mammal(Animal):
pass
class Bird(Animal):
pass
# 各种动物:
class Dog(Mammal):
pass
class Bat(Mammal):
pass
class Parrot(Bird):
pass
class Ostrich(Bird):
pass
现在,我们要给动物再加上Runnable和Flyable的功能,只需要先定义好Runnable和Flyable的类:
class Runnable(object):
def run(self):
print('Running...')
class Flyable(object):
def fly(self):
print('Flying...')
对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog:
class Dog(Mammal, Runnable):
pass
对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat:
class Bat(Mammal, Flyable):
pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
3.3MixIn思想
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixIn和FlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServer和UDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn和ThreadingMixIn提供。通过组合,我们就可以创造出合适的服务来。
比如,编写一个多进程模式的TCP服务,定义如下:
class MyTCPServer(TCPServer, ForkingMixIn):
pass
编写一个多线程模式的UDP服务,定义如下:
class MyUDPServer(UDPServer, ThreadingMixIn):
pass
如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn:
class MyTCPServer(TCPServer, CoroutineMixIn):
pass
这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。
小结
由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用MixIn的设计。
4.定制类
看到类似slots这种形如xxx的变量或者函数名就要注意,这些在Python中是有特殊用途的。
slots我们已经知道怎么用了,len()方法我们也知道是为了能让class作用于len()函数。
除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
4.1__str__
我们先定义一个Student类,打印一个实例:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>
打印出一堆<main.Student object at 0x109afb190>,不好看。
怎么才能打印得好看呢?只需要定义好str()方法,返回一个好看的字符串就可以了:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。
4.2__repr__
但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是str(),而是repr(),两者的区别是str()返回用户看到的字符串,而repr()返回程序开发者看到的字符串,也就是说,repr()是为调试服务的。
解决办法是再定义一个repr()。但是通常str()和repr()代码都是一样的,所以,有个偷懒的写法:
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__
4.3__iter__
如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个iter()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的next()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
4.4__getitem__
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现getitem()方法:
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101
但是list有个神奇的切片方法:
>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]
对于Fib却报错。原因是getitem()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
现在试试Fib的切片:
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
但是没有对step参数作处理:
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
也没有对负数作处理,所以,要正确实现一个getitem()还是有很多工作要做的。
此外,如果把对象看成dict,getitem()的参数也可能是一个可以作key的object,例如str。
与之对应的是setitem()方法,把对象视作list或dict来对集合赋值。最后,还有一个delitem()方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
4.5__getattr__
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:
class Student(object):
def __init__(self):
self.name = 'Michael'
调用name属性,没问题,但是,调用不存在的score属性,就有问题了:
>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'
错误信息很清楚地告诉我们,没有找到score这个attribute。
要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个getattr()方法,动态返回一个属性。修改如下:
class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score,Python解释器会试图调用getattr(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99
返回函数也是完全可以的:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
只是调用方式要变为:
>>> s.age()
25
注意,只有在没有找到属性的情况下,才调用getattr,已有的属性,比如name,不会在getattr中查找。
此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的getattr默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。
这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。
举个例子:
现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
http://api.server/user/friends
http://api.server/user/timeline/list
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。
利用完全动态的getattr,我们可以写出一个链式调用:
class Chain(object):
def __init__(self, path=''):
self._path = path
def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))
def __str__(self):
return self._path
__repr__ = __str__
试试:
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
GET /users/:user/repos
调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:
Chain().users('michael').repos
就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。
4.6__call__
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。
任何类,只需要定义一个call()方法,就可以直接对实例进行调用。请看示例:
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
调用方式如下:
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
call()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。
那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有call()的类实例:
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False
通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。
小结
Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类。
网友评论