题目:
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
分析:
这个题如果只考虑O(n)的解法,就是道easy难度的题目,因为就变成了典型的滑动窗口,设置两个变量end,start,每次先滑动窗口的end,直到sum>=s为止,然后滑动start使得sum小于s为止,记录此时end与start差,维护最小长度,继续滑动窗口直到end到达边界.
显然复杂度为O(n),因为end变量是一直在动的,而start又受制于end变化,外层仅有end的遍历.
考虑O(nlogn)的复杂度,由于有logn,一般是用二分法,接下来就是如何二分的问题,我们可以考虑用连续值sum来判断,代码写得很详细了,可以看代码.
代码:
public class Solution{
public int minSubArrayLen(int s,int [] nums){
return solveNlogN(s,nums);
}
private int solveNlogN(int s,int [] nums){
int [] sums = new int[nums.length+1];
// init the sums
for(int i=1;i<sums.length;i++){
sums[i]=sums[i-1]+nums[i-1];
}
int minLen = Integer.MAX_VALUE;
//二分查找序列
for(int i=0;i<sums.length;i++){
int end=binarySearch(i+1,sums.length-1,sums[i]+s,sums);
if(end==sums.length){
break;
}
minLen=Math.min(minLen,end-i);
}
return minLen==Integer.MAX_VALUE?0:minLen;
}
private int binarySearch(int lo,int hi,int key,int [] sums){
while(lo<=hi){
int mid = (lo+hi)/2;
if(sums[mid]>=key){
hi=mid-1;
}
else {
lo=mid+1;
}
}
return lo;
}
private int solveN(int s,int [] nums){
int start=0,end=0,sum=0,minLen=Integer.MAX_VALUE;
while(end<nums.length){
while(end<nums.length&&sum<s){
sum+=nums[end++];
}
if(sum<s)
break;
while(start<end&&sum>=s){
sum-=nums[start++];
}
minLen=Math.min(minLen,end-start+1);
}
return minLen==Integer.MAX_VALUE?0:minLen;
}
}
网友评论