1.
Before class: read material on the topic
⭐️About code: GitHub: neubig/nn4nlp-code
Assignment1: Text Classifier/Questionnaire
Assignment2: SOTA Survey
Assignment3: SOTA Re-implementation
Assignment4: Final Project
Bags of words:把一些词放进function,相加结果为score
每个词向量都有feature,feature combination(如feature1 + feature5 = positive)
体现为Computation graph(均可转化为图)
(简)
图中的结点X可以是{tensor, matrix, vector, scalar} value
左上结点表示一个function,每条入边传入一个参数(边的起始顶点)
一个例子(简)
算法:
Forward propagation正向传播
Back-propagation (a loss function, a value we want to minimize
parameter update
神经网络框架:静态:theano, caffe, mxnet, tensorflow
动态:aynet,chainer, pytorch
⭐️基本过程gitnub:第一个项目
把word都先转化成整数,然后用向量和矩阵(对应下图)
而对于continous bag of words,修改#define the model 部分即可(下面的其它代码)
class plan:
TOPIC 1:Model of words
TOPIC 2: Model of sentences
TOPIC 3: Implementing, Debugging, interpreting
TOPIC 4: sequence-to-sequence models
TOPIC 5: Structured Prediction Models
等等
2.
Language models:can help score sentences ,generate sentences
Problem1: similar words ->class based language models
Problem2: intervening words -> skip-gram lm
Problem3: Long-distance dependencies ->cache
Softmax:
A computation graph view
Loss function: a measure of how bad our predictions are
Paramenter update: 为了减少损失,而进行平移之类的
实战:02-lm
网友评论