美文网首页
hadoop开发应用

hadoop开发应用

作者: hello高world | 来源:发表于2018-04-23 00:06 被阅读0次

    hadoop开发应用

    一、文件上传

    • 创建input文件夹

      # hadoop fs -mkdir /input

    • 上传文件到input文件夹下

      # hadoop fs -put dat0102.dat /input/

    二、查询指定字符串出现次数

    1. 编写代码

    如果忘记了,可以查看:

    $HADOOP_HOME/share/doc/hadoop/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

    代码如下:

    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class WordCount {
    
        public static class TokenizerMapper
                extends Mapper<Object, Text, Text, IntWritable>{
    
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
            private static String findStr = "";
          
            public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
                Configuration conf=context.getConfiguration();
                findStr = conf.get("findStr");
                StringTokenizer itr = new StringTokenizer(value.toString());
                while (itr.hasMoreTokens()) {
                    String wordStr = itr.nextToken();
                    if(!findStr.equals(wordStr)) continue;
                    word.set(wordStr);
                    context.write(word, one);
                }
            }
    
        }
    
        public static class IntSumReducer
                extends Reducer<Text,IntWritable,Text,IntWritable> {
            private IntWritable result = new IntWritable();
    
            public void reduce(Text key, Iterable<IntWritable> values,
                               Context context
            ) throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                result.set(sum);
                context.write(key, result);
            }
        }
    
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            conf.set("findStr", args[2]);
            Job job = Job.getInstance(conf, "word count");
    
            job.setJarByClass(WordCount.class);
            job.setMapperClass(TokenizerMapper.class);
            job.setCombinerClass(IntSumReducer.class);
            job.setReducerClass(IntSumReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    

    2. 编译代码与打包

    # hadoop com.sun.tools.javac.Main WordCount.java

    # jar cf wc.jar WordCount*.class

    3. 运行与输出存储

    # #第一个参数为输入目录,第二个参数为输出目录,第三个参数为需要查找的字符串
    # hadoop jar wc.jar WordCount /input/ /output/ Hadoop

    # hadoop fs -cat /output/part-r-00000

    输出结果: Hadoop 986

    4. 远程使用windows客户端

    添加JVM属性: -DHADOOP_USER_NAME=hadoop (hadoop为hdfs目录权限用户)

    程序运行参数: hdfs://192.168.17.128:9000/input/ hdfs://192.168.17.128:9000/output/wc7/ Hadoop

    相关文章

      网友评论

          本文标题:hadoop开发应用

          本文链接:https://www.haomeiwen.com/subject/vuohlftx.html