导入性状数据
traits <- read.delim("traits.txt", row.names=1)
# 保证traits与 Texp0 矩阵的 rownames 顺序一致
rownames(traits)
traitrows = match(rownames(Texp0), rownames(traits))
traits = traits[traitrows, ]
模块与性状关系
统计样本数目和基因数目
ngenes = ncol(Texp0)
nsamples = nrow(Texp0)
计算模块特征向量 MEs
MEs0 = moduleEigengenes(Texp0, moduleColors)$eigengenes
MEs = orderMEs(MEs0)
MEs与性状之间的相关性
moduleTraitCor = cor(MEs, traits, use = "p")
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nsamples)
heatmap绘图
## 连接相关性和 pvalue
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
## heatmap 画图
labeledHeatmap(Matrix = moduleTraitCor,
xLabels = names(rraits),
yLabels = names(MEs),
ySymbols = names(MEs),
colorLabels = FALSE,
colors = greenWhiteRed(50),
textMatrix = textMatrix,
setStdMargins = FALSE,
cex.text = 0.5,
zlim = c(-1,1),
main = paste("Module-trait relationships"))
网友评论