美文网首页
朴素贝叶斯(Naive Bayes)算法

朴素贝叶斯(Naive Bayes)算法

作者: 统计学徒 | 来源:发表于2019-03-19 23:27 被阅读0次

    朴素贝叶斯算法属于分类算法。发源于古典数学理论,对缺失数据不太敏感,有稳定的分类效率,模型所需估计的参数很少,算法比较简单。

    朴素贝叶斯算法贝叶斯是说明这个算法和贝叶斯定理有联系,而朴素是因为处理实际的需要,做了一个简化——假设每个特征之间是独立的(如果研究的对象互相之间的影响很强,计算概率时考虑的问题非常复杂,做了独立假设,就可以分解后进行研究),这是这个算法模型与贝叶斯定理的区别。

    image.png

    将 x 作为特征,y 作为类别,那公式左边的 P(yi|x)就是说在知道特征 x 的情况下,计算这个特征属于 yi 类的可能性大小。通过比较找出这个可能性的值最大的属于哪一类,就将特征 x 归为这一类。

    image.png

    第3步的计算就是整个关键所在,计算依据是上面的贝叶斯公式。

    对于每一个类的概率计算,公式右边的分母的 P(x)都是相同的,所以可以不计算(我们只是对最终结果进行比较,不影响)。

    P(yi)也称为先验概率,是 x 属于 yi 类的一个概率,这个是通过历史信息得到的(在程序实现的时候,历史信息或者说先验信息就是我们的训练数据集),我们通过对训练样本数据进行统计,分别算出 x 属于 y1,y2,...,yn 类的概率是多少,这个是比较容易得到的。

    所以,主要是求 P(x|yi)= P(a1,a2,...,am|yi)

    这个时候对于贝叶斯模型的朴素的独立性假设就发挥作用了(综合的计算变成了独立计算后的综合,简化模型,极大地减少了计算的复杂程度):

    P(a1,a2,...,am|yi) = P(a1|yi)P(a2|yi)...P(am|yi)

    所以计算想要得到的东西如下:


    image.png

    一个程序简例

    '''#########################################################################################
    # Name: NB-test
    # Author: Wenchao Liu
    # Date: 2018-12-23
    # Description: To study the Naive Bayes method by using a simple example.
    #                    Windows10, Python3.7
    #########################################################################################'''
    
    def dealData(D, L):
        '''将训练集中的连续数据离散化,符号数据数值化。'''
        for item in D:
            if(int(item[0]) > 0):
                item[0] = 1
            if(float(item[2]) > 0.5):
                item[2] = 1
            else:
                item[2] = 0
        #print(data)
        for i in range(len(L)):
            if(L[i] == '涨'):
                L[i] = 1
            else:
                L[i] = 0
        #print(L)
        return D, L
    
    def splitData(D, L):
        '''将训练集中的不同类数据分开,方便统计处理。'''
        D0 = []
        D1 = []
        for i in range(len(L)):
            if(L[i] == 0):
                D0.append(D[i])
            elif(L[i] == 1):
                D1.append(D[i])
        #print(D0, D1)
        return D0, D1      
    
    def countNumber(data, i, z):
        '''统计某个属性出现的次数。'''
        number = 0
        for item in data:
            if(item[i] == z):
                number = number + 1
        return number
    
    def calculateProbobility(D0, D1, L, Z):
        '''对于目标对象,计算其属于各类别的概率大小。'''
        # 计算训练样本中不同类别的数量
        num_down = L.count(0)
        num_up = L.count(1)
        # 先验概率(类别分布不均衡会对概率计算造成较大影响,先不考虑)
        p0 = num_down/len(L)
        p1 = num_up/len(L)
        #print(p0, p1)
        # 存放各属性对应的概率
        p_down = []
        p_up = []
        # 拉普拉斯平滑
        delta = 1    # 取大于 0 的数,一般使用 1 
        feature_num = 2    # 某特征可以取值个数,此处为二值型特征
        for i in range(len(Z)):
            p_down.append((countNumber(D0, i, Z[i])+delta)/(len(D0)+ feature_num*delta))
            p_up.append((countNumber(D1, i, Z[i])+delta)/(len(D1)+ feature_num*delta))
        #print(p_down, p_up)
        pc0 = 1
        pc1 = 1
        for i in range(len(Z)):
            pc0 = pc0 * p_down[i]
            pc1 = pc1 * p_up[i]
        Pc = [pc0, pc1]
        #print(pc0,pc1)
        return Pc
    
    def selectClass(Pc, Lc):
        '''找出对应概率最大的类别,预测目标对象为此类别。'''
        max_index = Pc.index(max(Pc))
        print('********** NB算法预测结果 **********')
        print('预测目标结果为:' + Lc[max_index])
     
    def main():
        # 训练集。样本数量6;属性4:交点、前一天涨跌(0跌1涨)、振幅(%)、高低开(0低1高)
        D = [[0, 1, 1.33, 1], [7, 1, 0.55, 0], [0, 1, 1.29, 0], [0, 1, 0.75, 0], [0, 0, 0.43, 1], [0, 1, 0.52, 1],  [0, 0, 1.13, 0]]
        # 训练样本的类别标签集
        L = ['涨', '涨', '跌', '跌', '涨', '涨', '跌']
        # 测试目标(2018-12-21)
        Z = [3, 0, 1.00, 0]
        # 预测类别标签
        Lc = ['跌', '涨']
        if (Z[0] > 0):
            Z[0] = 1
        if(Z[2] > 0.5):
            Z[2] = 1
        D, L = dealData(D, L)
        D0, D1 = splitData(D, L)
        Pc = calculateProbobility(D0, D1, L, Z)
        selectClass(Pc, Lc)
    
    if __name__ == '__main__':
        main()
    

    相关文章

      网友评论

          本文标题:朴素贝叶斯(Naive Bayes)算法

          本文链接:https://www.haomeiwen.com/subject/vutwkqtx.html