美文网首页
激活函数比较

激活函数比较

作者: 想飞的大兔子 | 来源:发表于2018-03-23 08:22 被阅读0次

Sigmoid 和 ReLU 比较:

sigmoid 的梯度消失问题,ReLU 的导数就不存在这样的问题,它的导数表达式如下:

image

曲线如图

image

对比sigmoid类函数主要变化是:
1)单侧抑制
2)相对宽阔的兴奋边界
3)稀疏激活性。

Sigmoid 和 Softmax 区别:

softmax is a generalization of logistic function that “squashes”(maps) a K-dimensional vector z of arbitrary real values to a K-dimensional vector σ(z) of real values in the range (0, 1) that add up to 1.

sigmoid将一个real value映射到(0,1)的区间,用来做二分类。

而 softmax 把一个 k 维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)其中 bi 是一个 0~1 的常数,输出神经元之和为 1.0,所以相当于概率值,然后可以根据 bi 的概率大小来进行多分类的任务。

二分类问题时 sigmoid 和 softmax 是一样的,求的都是 cross entropy loss,而 softmax 可以用于多分类问题

softmax是sigmoid的扩展,因为,当类别数 k=2 时,softmax 回归退化为 logistic 回归。具体地说,当 k=2 时,softmax 回归的假设函数为:

image

利用softmax回归参数冗余的特点,从两个参数向量中都减去向量θ1 ,得到:

image

最后,用 θ′ 来表示 θ2−θ1,上述公式可以表示为 softmax 回归器预测其中一个类别的概率为

image

另一个类别概率的为

image

这与 logistic回归是一致的。

softmax建模使用的分布是多项式分布,而logistic则基于伯努利分布

多个logistic回归通过叠加也同样可以实现多分类的效果,但是 softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类;多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别。

选择的时候,就是根据各个函数的优缺点来配置,例如:

如果使用 ReLU,要小心设置 learning rate,注意不要让网络出现很多 “dead” 神经元,如果不好解决,可以试试 Leaky ReLU、PReLU 或者 Maxout.

相关文章

  • 激活函数比较

    Sigmoid 和 ReLU 比较: sigmoid 的梯度消失问题,ReLU 的导数就不存在这样的问题,它的导数...

  • 激活函数比较

    下面内容转自深度学习:激活函数的比较和优缺点,sigmoid,tanh,relu[https://blog.csd...

  • 常用激活函数比较

    本文转自https://www.jianshu.com/p/22d9720dbf1a,有些没看懂,先记下来,以及增...

  • 常用激活函数比较

    本文结构: 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 如何选择 ...

  • 激活函数softmax-P2分类任务

    激活函数种类激活函数作用 激活函数 深度学习常用激活函数之— Sigmoid & ReLU & Softmax 深...

  • 16 keras激活函数

    激活函数也是神经网络中一个很重的部分。每一层的网络输出都要经过激活函数。比较常用的有linear,sigmoid,...

  • 6.神经网络训练细节part1

    一、激活函数 前边我们学到,一个节点的输出会进入激活函数进行处理 常见的激活函数有以下 sigmoid激活函数 s...

  • tanh函数&logistic函数

    传统Sigmoid系激活函数 传统Sigmoid系激活函数 传统Sigmoid系激活函数,Sigmoid系(Log...

  • 机器学习之神经网络

    什么是神经网络 就是使用了平滑的激活函数的多层感知机 激活函数 什么是激活函数呢? 激活函数就是从输入值到对应输出...

  • [Machine Learning From Scratch]-

    激活层激活函数定义 封装激活层

网友评论

      本文标题:激活函数比较

      本文链接:https://www.haomeiwen.com/subject/vxjzqftx.html