美文网首页
我的keras代写深度学习实验程序经历(tensorflow代写

我的keras代写深度学习实验程序经历(tensorflow代写

作者: 深度学习实验室 | 来源:发表于2019-10-22 03:36 被阅读0次

                 在10行代码中使用Fast.AI细粒度服装分类

    服装类别分类被认为是一种细粒度的图像分类任务,因为,大多数服装看起来非常相似。

    数据集使用DeepFashion数据库

    ​​​

    from fastai import *
    from fastai.vision import *

    path = Path("data/cloth_categories/")

    data = ImageDataBunch.from_csv(path, csv_labels="train_labels.csv", ds_tfms=get_transforms(), size=224)

    data.normalize(imagenet_stats)

    learn = create_cnn(data, models.resnet34, metrics=accuracy)

    learn.fit_one_cycle(8)

    learn.save('stage-1_sz-150')

    获取数据集:

    http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html

    在此页面上,转到Google云端硬盘或百度硬盘链接,然后下载:

    衣服图片(2.8 GB Zip文件)

    类别注释(文本文件)

    train/ Val /test(文本文件)

    #好吧,让我们开始编码......

    from fastai import *

    from fastai.vision import *

    数据导入

    # Creating path object

    path = Path("data/cloth_categories/")

    # Creating data from CSV

    data = ImageDataBunch.from_csv(path, csv_labels="labels.csv" ,ds_tfms=get_transforms(), size=150)

    #Normalize dataset and augmentated image tranformation

    data.normalize(imagenet_stats)

    数据可视化

    # show 8*8 grid of random images from our dataset

    data.show_batch(rows=8, figsize=(14,12))

    查看目标数据类

    print(data.classes)

    print (len(data.classes),data.c)

    >>> ['Blouse', 'Blazer', 'Button-Down', 'Bomber', 'Anorak', 'Tee', 'Tank', 'Top', 'Sweater', 'Flannel', 'Hoodie', 'Cardigan', 'Jacket', 'Henley', 'Poncho', 'Jersey', 'Turtleneck', 'Parka', 'Peacoat', 'Halter', 'Skirt', 'Shorts', 'Jeans', 'Joggers', 'Sweatpants', 'Jeggings', 'Cutoffs', 'Sweatshorts', 'Leggings', 'Culottes', 'Chinos', 'Trunks', 'Sarong', 'Gauchos', 'Jodhpurs', 'Capris', 'Dress', 'Romper', 'Coat', 'Kimono', 'Jumpsuit', 'Robe', 'Caftan', 'Kaftan', 'Coverup', 'Onesie']

    (46, 46)

    最后使用Resnet-34进行训练

    # create fast.ai vision Conv learner aka CNN from resnet34 architecture

    # Please note, we are using metrics as top-1 Accuracy

    learn = create_cnn(data, models.resnet34, metrics=accuracy)

    # fit learner on data in 8 cycle

    learn.fit_one_cycle(8)

    # save our fitted model

    learn.save('stage-1_arch-34_sz-150')

    >>>

    Total time: 49:55

    epoch  train loss  valid loss  accuracy

    1      0.632115    0.474118    0.761742  (06:13)

    2      0.548713    0.408220    0.783295  (06:12)

    3      0.412822    0.369032    0.826267  (06:13)

    4      0.350622    0.345870    0.841440  (06:14)

    5      0.345819    0.308995    0.852246  (06:16)

    6      0.261442    0.289868    0.877319  (06:16)

    7      0.270456    0.276496    0.891509  (06:16)

    8      0.264946    0.272343    0.921870  (06:12)

    相关文章

      网友评论

          本文标题:我的keras代写深度学习实验程序经历(tensorflow代写

          本文链接:https://www.haomeiwen.com/subject/vxtmgqtx.html