美文网首页
ThreadLocal源码解析及使用

ThreadLocal源码解析及使用

作者: 雨落千木的时节 | 来源:发表于2019-03-21 15:07 被阅读0次

1.作用:
ThreadLocal是线程本地存储,ThreadLocal为变量在每个线程中都创建了一个副本,每个线程都可以访问自己内部的副本变量。

2.原理:

private final int threadLocalHashCode = nextHashCode();
private static AtomicInteger nextHashCode = new AtomicInteger();

private static final int HASH_INCREMENT = 0x61c88647;

private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
 }
//hash值:通过hash值可以搜索到ThreadLocal

protected T initialValue() {
        return null;
    }

//返回当前线程的初始值,当线程访问变量的时候该方法第一次被调用,通常该方法在每个线程中最多被调用一次,
//该方法返回null,如果希望有值的话需要子类重写该方法

/**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
    
    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }
    
    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    
     /**
     * Removes the current thread's value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * {@code initialValue} method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }
 //我们可以看到ThreadLocal常见的get,set,remove操作都是通过当前线程获取ThreadLocalMap,
//然后使用ThreadLocalMap进行操作。
//我们来看一下ThreadLocalMap的代码
/**
 * ThreadLocalMap is a customized hash map suitable only for
 * maintaining thread local values. No operations are exported
 * outside of the ThreadLocal class. The class is package private to
 * allow declaration of fields in class Thread.  To help deal with
 * very large and long-lived usages, the hash table entries use
 * WeakReferences for keys. However, since reference queues are not
 * used, stale entries are guaranteed to be removed only when
 * the table starts running out of space.
 */
static class ThreadLocalMap {

    /**
     * The entries in this hash map extend WeakReference, using
     * its main ref field as the key (which is always a
     * ThreadLocal object).  Note that null keys (i.e. entry.get()
     * == null) mean that the key is no longer referenced, so the
     * entry can be expunged from table.  Such entries are referred to
     * as "stale entries" in the code that follows.
     */
    static class Entry extends WeakReference<ThreadLocal<?>> {
        /** The value associated with this ThreadLocal. */
        Object value;

        Entry(ThreadLocal<?> k, Object v) {
            super(k);
            value = v;
        }
    }

    /**
     * The initial capacity -- MUST be a power of two.
     */
    private static final int INITIAL_CAPACITY = 16;

    /**
     * The table, resized as necessary.
     * table.length MUST always be a power of two.
     */
    private Entry[] table;

    /**
     * The number of entries in the table.
     */
    private int size = 0;

    /**
     * The next size value at which to resize.
     */
    private int threshold; // Default to 0

    /**
     * Set the resize threshold to maintain at worst a 2/3 load factor.
     */
    private void setThreshold(int len) {
        threshold = len * 2 / 3;
    }

    /**
     * Increment i modulo len.
     */
    private static int nextIndex(int i, int len) {
        return ((i + 1 < len) ? i + 1 : 0);
    }

    /**
     * Decrement i modulo len.
     */
    private static int prevIndex(int i, int len) {
        return ((i - 1 >= 0) ? i - 1 : len - 1);
    }

    /**
     * Construct a new map initially containing (firstKey, firstValue).
     * ThreadLocalMaps are constructed lazily, so we only create
     * one when we have at least one entry to put in it.
     */
    ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
        table = new Entry[INITIAL_CAPACITY];
        int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
        table[i] = new Entry(firstKey, firstValue);
        size = 1;
        setThreshold(INITIAL_CAPACITY);
    }

    /**
     * Construct a new map including all Inheritable ThreadLocals
     * from given parent map. Called only by createInheritedMap.
     *
     * @param parentMap the map associated with parent thread.
     */
    private ThreadLocalMap(ThreadLocalMap parentMap) {
        Entry[] parentTable = parentMap.table;
        int len = parentTable.length;
        setThreshold(len);
        table = new Entry[len];

        for (int j = 0; j < len; j++) {
            Entry e = parentTable[j];
            if (e != null) {
                @SuppressWarnings("unchecked")
                ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                if (key != null) {
                    Object value = key.childValue(e.value);
                    Entry c = new Entry(key, value);
                    int h = key.threadLocalHashCode & (len - 1);
                    while (table[h] != null)
                        h = nextIndex(h, len);
                    table[h] = c;
                    size++;
                }
            }
        }
    }

    /**
     * Get the entry associated with key.  This method
     * itself handles only the fast path: a direct hit of existing
     * key. It otherwise relays to getEntryAfterMiss.  This is
     * designed to maximize performance for direct hits, in part
     * by making this method readily inlinable.
     *
     * @param  key the thread local object
     * @return the entry associated with key, or null if no such
     */
    private Entry getEntry(ThreadLocal<?> key) {
        int i = key.threadLocalHashCode & (table.length - 1);
        Entry e = table[i];
        if (e != null && e.get() == key)
            return e;
        else
            return getEntryAfterMiss(key, i, e);
    }

    /**
     * Version of getEntry method for use when key is not found in
     * its direct hash slot.
     *
     * @param  key the thread local object
     * @param  i the table index for key's hash code
     * @param  e the entry at table[i]
     * @return the entry associated with key, or null if no such
     */
    private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
        Entry[] tab = table;
        int len = tab.length;

        while (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == key)
                return e;
            if (k == null)
                expungeStaleEntry(i);
            else
                i = nextIndex(i, len);
            e = tab[i];
        }
        return null;
    }

    /**
     * Set the value associated with key.
     *
     * @param key the thread local object
     * @param value the value to be set
     */
    private void set(ThreadLocal<?> key, Object value) {

        // We don't use a fast path as with get() because it is at
        // least as common to use set() to create new entries as
        // it is to replace existing ones, in which case, a fast
        // path would fail more often than not.

        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);

        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            ThreadLocal<?> k = e.get();

            if (k == key) {
                e.value = value;
                return;
            }

            if (k == null) {
                replaceStaleEntry(key, value, i);
                return;
            }
        }

        tab[i] = new Entry(key, value);
        int sz = ++size;
        if (!cleanSomeSlots(i, sz) && sz >= threshold)
            rehash();
    }

    /**
     * Remove the entry for key.
     */
    private void remove(ThreadLocal<?> key) {
        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);
        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            if (e.get() == key) {
                e.clear();
                expungeStaleEntry(i);
                return;
            }
        }
    }

    /**
     * Replace a stale entry encountered during a set operation
     * with an entry for the specified key.  The value passed in
     * the value parameter is stored in the entry, whether or not
     * an entry already exists for the specified key.
     *
     * As a side effect, this method expunges all stale entries in the
     * "run" containing the stale entry.  (A run is a sequence of entries
     * between two null slots.)
     *
     * @param  key the key
     * @param  value the value to be associated with key
     * @param  staleSlot index of the first stale entry encountered while
     *         searching for key.
     */
    private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                   int staleSlot) {
        Entry[] tab = table;
        int len = tab.length;
        Entry e;

        // Back up to check for prior stale entry in current run.
        // We clean out whole runs at a time to avoid continual
        // incremental rehashing due to garbage collector freeing
        // up refs in bunches (i.e., whenever the collector runs).
        int slotToExpunge = staleSlot;
        for (int i = prevIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = prevIndex(i, len))
            if (e.get() == null)
                slotToExpunge = i;

        // Find either the key or trailing null slot of run, whichever
        // occurs first
        for (int i = nextIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = nextIndex(i, len)) {
            ThreadLocal<?> k = e.get();

            // If we find key, then we need to swap it
            // with the stale entry to maintain hash table order.
            // The newly stale slot, or any other stale slot
            // encountered above it, can then be sent to expungeStaleEntry
            // to remove or rehash all of the other entries in run.
            if (k == key) {
                e.value = value;

                tab[i] = tab[staleSlot];
                tab[staleSlot] = e;

                // Start expunge at preceding stale entry if it exists
                if (slotToExpunge == staleSlot)
                    slotToExpunge = i;
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                return;
            }

            // If we didn't find stale entry on backward scan, the
            // first stale entry seen while scanning for key is the
            // first still present in the run.
            if (k == null && slotToExpunge == staleSlot)
                slotToExpunge = i;
        }

        // If key not found, put new entry in stale slot
        tab[staleSlot].value = null;
        tab[staleSlot] = new Entry(key, value);

        // If there are any other stale entries in run, expunge them
        if (slotToExpunge != staleSlot)
            cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    }

    /**
     * Expunge a stale entry by rehashing any possibly colliding entries
     * lying between staleSlot and the next null slot.  This also expunges
     * any other stale entries encountered before the trailing null.  See
     * Knuth, Section 6.4
     *
     * @param staleSlot index of slot known to have null key
     * @return the index of the next null slot after staleSlot
     * (all between staleSlot and this slot will have been checked
     * for expunging).
     */
    private int expungeStaleEntry(int staleSlot) {
        Entry[] tab = table;
        int len = tab.length;

        // expunge entry at staleSlot
        tab[staleSlot].value = null;
        tab[staleSlot] = null;
        size--;

        // Rehash until we encounter null
        Entry e;
        int i;
        for (i = nextIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = nextIndex(i, len)) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null;
                tab[i] = null;
                size--;
            } else {
                int h = k.threadLocalHashCode & (len - 1);
                if (h != i) {
                    tab[i] = null;

                    // Unlike Knuth 6.4 Algorithm R, we must scan until
                    // null because multiple entries could have been stale.
                    while (tab[h] != null)
                        h = nextIndex(h, len);
                    tab[h] = e;
                }
            }
        }
        return i;
    }

    /**
     * Heuristically scan some cells looking for stale entries.
     * This is invoked when either a new element is added, or
     * another stale one has been expunged. It performs a
     * logarithmic number of scans, as a balance between no
     * scanning (fast but retains garbage) and a number of scans
     * proportional to number of elements, that would find all
     * garbage but would cause some insertions to take O(n) time.
     *
     * @param i a position known NOT to hold a stale entry. The
     * scan starts at the element after i.
     *
     * @param n scan control: {@code log2(n)} cells are scanned,
     * unless a stale entry is found, in which case
     * {@code log2(table.length)-1} additional cells are scanned.
     * When called from insertions, this parameter is the number
     * of elements, but when from replaceStaleEntry, it is the
     * table length. (Note: all this could be changed to be either
     * more or less aggressive by weighting n instead of just
     * using straight log n. But this version is simple, fast, and
     * seems to work well.)
     *
     * @return true if any stale entries have been removed.
     */
    private boolean cleanSomeSlots(int i, int n) {
        boolean removed = false;
        Entry[] tab = table;
        int len = tab.length;
        do {
            i = nextIndex(i, len);
            Entry e = tab[i];
            if (e != null && e.get() == null) {
                n = len;
                removed = true;
                i = expungeStaleEntry(i);
            }
        } while ( (n >>>= 1) != 0);
        return removed;
    }

    /**
     * Re-pack and/or re-size the table. First scan the entire
     * table removing stale entries. If this doesn't sufficiently
     * shrink the size of the table, double the table size.
     */
    private void rehash() {
        expungeStaleEntries();

        // Use lower threshold for doubling to avoid hysteresis
        if (size >= threshold - threshold / 4)
            resize();
    }

    /**
     * Double the capacity of the table.
     */
    private void resize() {
        Entry[] oldTab = table;
        int oldLen = oldTab.length;
        int newLen = oldLen * 2;
        Entry[] newTab = new Entry[newLen];
        int count = 0;

        for (int j = 0; j < oldLen; ++j) {
            Entry e = oldTab[j];
            if (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null; // Help the GC
                } else {
                    int h = k.threadLocalHashCode & (newLen - 1);
                    while (newTab[h] != null)
                        h = nextIndex(h, newLen);
                    newTab[h] = e;
                    count++;
                }
            }
        }

        setThreshold(newLen);
        size = count;
        table = newTab;
    }

    /**
     * Expunge all stale entries in the table.
     */
    private void expungeStaleEntries() {
        Entry[] tab = table;
        int len = tab.length;
        for (int j = 0; j < len; j++) {
            Entry e = tab[j];
            if (e != null && e.get() == null)
                expungeStaleEntry(j);
        }
    }
}
```

//ThreadLocalMap是自定义的hashmap,用于保存threadlocal的值,threadlocalMap中使用了弱引用,
//目的是为了处理较大而且长时间存活的变量
//解释一下:弱引用是在垃圾回收时,只要收集器
//扫描到了该对象,那么直接就回收该对象,不管
//对象的声明周期是否结束
//当释放掉threadLocal的强引用后,ThreadLocalMap中的value却没有被回收,而这块value永远不会访问到了
//假如说,Entry持有的是ThreadLocal强引用的话
//那么在ThreadLocal删除的时候必须先删除ThreadLocalMap
//否则会导致内存溢出

3.使用场景:
(1)spring事物
(2)数据库连接池
(3)用户登录,保存当前用户登录信息

相关文章

网友评论

      本文标题:ThreadLocal源码解析及使用

      本文链接:https://www.haomeiwen.com/subject/vyaqvqtx.html