本节主要内容:
MapReduce Helloworld实验:
运行wordcount单词计数案例,计算词语出现的次数
1.系统环境:
OS:CentOS Linux release 7.5.1804 (Core)
CPU:2核心
Memory:1GB
运行用户:root
JDK版本:1.8.0_252
Hadoop版本:cdh5.16.2
2.集群各节点角色规划为:
172.26.37.245 node1.hadoop.com---->namenode,zookeeper,journalnode,hadoop-hdfs-zkfc,resourcenode,historyserver
172.26.37.246 node2.hadoop.com---->datanode,zookeeper,journalnode,nodemanager,hadoop-client,mapreduce
172.26.37.247 node3.hadoop.com---->datanode,nodemanager,hadoop-client,mapreduce
172.26.37.248 node4.hadoop.com---->namenode,zookeeper,journalnode,hadoop-hdfs-zkfc
实验步骤
1.在HDFS文件系统上建立input文件夹(Node1节点)
# sudo -u hdfs hadoop fs -mkdir -p /user/cloudera/wordcount/input
2.建立测试文本(Node1节点)
在resourcenode上创建一个空文件夹,并进入
# cd /
# echo "Hello World Bye World" > file0
# echo "Hello Hadoop Goodbye Hadoop" > file1
将文件上传到hdfs中
# sudo -u hdfs hadoop fs -put file* /user/cloudera/wordcount/input
3.编译WordCount.jave
# vim WordCount.java
插入以下内容:
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
编译
# mkdir wordcount_classes
# javac -cp /usr/lib/hadoop/*:/usr/lib/hadoop/client-0.20/* -d wordcount_classes WordCount.java
成功的话没有任何回应,但是在 wordcount_classes 里面出现了org文件夹
# ll wordcount_classes
total 0
drwxr-xr-x 3 root root 19 Jun 25 22:41 org
4.创建jar
# jar -cvf wordcount.jar -C wordcount_classes/ .
added manifest
adding: org/(in = 0) (out= 0)(stored 0%)
adding: org/myorg/(in = 0) (out= 0)(stored 0%)
adding: org/myorg/WordCount$Map.class(in = 1938) (out= 797)(deflated 58%)
adding: org/myorg/WordCount$Reduce.class(in = 1611) (out= 647)(deflated 59%)
adding: org/myorg/WordCount.class(in = 1534) (out= 753)(deflated 50%)
把这个 wordcount.jar移动到 /data/
# mv wordcount.jar /data/
因为hdfs用户的根目录是/var/lib/hadoop-hdfs,所以我们要cd到刚刚有jar文件的目录
# cd /data
# sudo -u hdfs hadoop jar wordcount.jar org.myorg.WordCount /user/cloudera/wordcount/input /user/cloudera/wordcount/output
20/06/25 22:49:32 INFO client.RMProxy: Connecting to ResourceManager at node1.hadoop.com/172.26.37.245:8032
20/06/25 22:49:33 INFO client.RMProxy: Connecting to ResourceManager at node1.hadoop.com/172.26.37.245:8032
20/06/25 22:49:36 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
20/06/25 22:49:37 INFO mapred.FileInputFormat: Total input paths to process : 2
20/06/25 22:49:37 INFO mapreduce.JobSubmitter: number of splits:3
20/06/25 22:49:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1593100696092_0001
20/06/25 22:49:41 INFO impl.YarnClientImpl: Submitted application application_1593100696092_0001
20/06/25 22:49:41 INFO mapreduce.Job: The url to track the job: http://node1.hadoop.com:8088/proxy/application_1593100696092_0001/
20/06/25 22:49:41 INFO mapreduce.Job: Running job: job_1593100696092_0001
20/06/25 22:50:42 INFO mapreduce.Job: Job job_1593100696092_0001 running in uber mode : false
20/06/25 22:50:42 INFO mapreduce.Job: map 0% reduce 0%
20/06/25 22:52:28 INFO mapreduce.Job: map 33% reduce 0%
20/06/25 22:52:50 INFO mapreduce.Job: map 33% reduce 11%
20/06/25 22:53:19 INFO mapreduce.Job: map 67% reduce 11%
20/06/25 22:53:22 INFO mapreduce.Job: map 67% reduce 22%
20/06/25 22:53:46 INFO mapreduce.Job: map 100% reduce 22%
20/06/25 22:53:48 INFO mapreduce.Job: map 100% reduce 100%
20/06/25 22:53:50 INFO mapreduce.Job: Job job_1593100696092_0001 completed successfully
20/06/25 22:53:50 INFO mapreduce.Job: Counters: 50
File System Counters
FILE: Number of bytes read=79
FILE: Number of bytes written=585283
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=362
HDFS: Number of bytes written=41
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Killed map tasks=2
Launched map tasks=5
Launched reduce tasks=1
Data-local map tasks=5
Total time spent by all maps in occupied slots (ms)=448613
Total time spent by all reduces in occupied slots (ms)=77135
Total time spent by all map tasks (ms)=448613
Total time spent by all reduce tasks (ms)=77135
Total vcore-milliseconds taken by all map tasks=448613
Total vcore-milliseconds taken by all reduce tasks=77135
Total megabyte-milliseconds taken by all map tasks=459379712
Total megabyte-milliseconds taken by all reduce tasks=78986240
Map-Reduce Framework
Map input records=2
Map output records=8
Map output bytes=82
Map output materialized bytes=91
Input split bytes=309
Combine input records=8
Combine output records=6
Reduce input groups=5
Reduce shuffle bytes=91
Reduce input records=6
Reduce output records=5
Spilled Records=12
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=2101
CPU time spent (ms)=47590
Physical memory (bytes) snapshot=672563200
Virtual memory (bytes) snapshot=10217422848
Total committed heap usage (bytes)=379858944
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=53
File Output Format Counters
Bytes Written=41
5.查看结果
# sudo -u hdfs hdfs dfs -cat /user/cloudera/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
6.删除结果
如果你想再运行一次教程就要先删除掉结果
# sudo -u hdfs dfs -rm -r /user/cloudera/wordcount/output
7.JobHistory
http://172.26.37.245:19888/jobhistory/
可以看到执行过的任务
2020.06.25 22:49:39 EDT 2020.06.25 22:50:33 EDT 2020.06.25 22:53:47 EDT job_1593100696092_0001 wordcount hdfs root.hdfs SUCCEEDED 3 3 1 1
网友评论