高阶函数
map
map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
例子:将下列数字转化为字符串
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
reduce
reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
求和的例子:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [2,4,46,5])
2865
还可以用lambda函数进一步简化成:
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def char2num(s):
return DIGITS[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
filter
Python内建的filter()
函数用于过滤序列。
和map()
类似,filter()
也接收一个函数和一个序列。和map()
不同的是,filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。
注意到filter()
函数返回的是一个Iterator
,也就是一个惰性序列,所以要强迫filter()
完成计算结果,需要用list()
函数获得所有结果并返回list
。
用filter求素数
def _odd_iter(): #生成器生成从3开始的无限奇数序列
n = 1
while True:
n = n + 2
yield n
def _not_divisible(n):#定义筛选函数
return lambda x: x % n > 0
def primes():#不断返回下一个素数
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
for n in primes():#只输出1000以内
if n < 1000:
print(n)
else:
break
回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()
筛选出回数:
def is_palindrome(n):
return n==int(str(n)[::-1])
sorted
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()
函数就可以对list进行排序.
>>> sorted([36, 5, -12, 9, -21], key=abs) #按绝对值大小排
[5, 9, -12, -21, 36]
网友评论