挖掘数据的典型应用场景有搜索排序、关联分析以及聚类,下面我们一个一个来看,希望通过今天的学习,你能够了解数据挖掘典型场景及其应用的算法。
搜索排序
我们说过Hadoop大数据技术最早源于Google,而Google使用大数据技术最重要的应用场景就是网页排名。
当我们使用Google进行搜索的时候,你会发现,通常在搜索的前三个结果里就能找到自己想要的网页内容,而且很大概率第一个结果就是我们想要的网页。而排名越往后,搜索结果与我期望的偏差越大。并且在搜索结果页的上面,会提示总共找到多少个结果。
那么Google为什么能在十几万的网页中知道我最想看的网页是哪些,然后把这些页面排到最前面呢?
答案是Google使用了一种叫PageRank的算法,这种算法根据网页的链接关系给网页打分。如果一个网页A,包含另一个网页B的超链接,那么就认为A网页给B网页投了一票,以下面四个网页A、B、C、D举例,带箭头的线条表示链接。
imageB网页包含了A、D两个页面的超链接,相当于B网页给A、D每个页面投了一票,初始的时候,所有页面都是1分,那么经过这次投票后,B给了A和D每个页面1/2分(B包含了A、D两个超链接,所以每个投票值1/2分),自己从C页面得到1/3分(C包含了A、B、D三个页面的超链接,每个投票值1/3分)。
而A页面则从B、C、D分别得到1/2、1/3、1分。用公式表示就是
等号左边是经过一次投票后,A页面的PageRank分值;等号右边每一项的分子是包含A页面超链接的页面的PageRank分值,分母是该页面包含的超链接数目。
这样经过一次计算后,每个页面的PageRank分值就会重新分配,重复同样的算法过程,经过几次计算后,根据每个页面PageRank分值进行排序,就得到一个页面重要程度的排名表。根据这个排名表,将用户搜索出来的网页结果排序,排在前面的通常也正是用户想要的结果。
但是这个算法还有个问题,如果某个页面只包含指向自己的超链接,这样的话其他页面不断给它送分,而自己一分不出,随着计算执行次数越多,它的分值也就越高,这显然是不合理的。这种情况就像下图所示的,A页面只包含指向自己的超链接。
image
Google的解决方案是,设想浏览一个页面的时候,有一定概率不是点击超链接,而是在地址栏输入一个URL访问其他页面,表示在公式上,就是
上面就是跳转到其他任何页面的概率,通常取经验值0.15(即 为0.85),因为有一定概率输入的URL是自己的,所以加上上面公式最后一项,其中分母4表示所有网页的总数。
那么对于个网页,任何一个页面的PageRank计算公式如下
公式中,表示所有包含有超链接的,表示页面包含的超链接数,表示所有的网页总和。
由于Google要对全世界的网页进行排名,所以这里的N可能是一个万亿级的数字,一开始将所有页面的PageRank值设为1,带入上面公式计算,每个页面都得到一个新的PageRank值。再把这些新的PageRank值带入上面的公式,继续得到更新的PageRank值,如此迭代计算,直到所有页面的PageRank值几乎不再有大的变化才停止。
在这样大规模的数据上进行很多次迭代计算,是传统计算方法根本解决不了的问题,这就是Google要研发大数据技术的原因,并因此诞生了一个大数据行业。而PageRank算法也让Google从众多搜索引擎公司脱颖而出,铸就了Google接近万亿级美元的市值,开创了人类科技的新纪元。
关联分析
在传统商超确实没有见过把啤酒和纸尿裤放在一起的情况,可能是因为传统商超的物理货架分区策略限制它没有办法这么做,而啤酒和尿不湿存在关联关系则确实是大数据中存在的规律,在电子商务网站就可以轻易进行关联推荐。
通过商品订单,可以发现频繁出现在同一个购物篮里商品间的关联关系,这种大数据关联分析也被称作是“购物篮分析”,频繁出现的商品组合也被称作是“频繁模式”。
在深入关联分析前,你需要先了解两个基本概念,一个是支持度,一个是置信度。
支持度是指一组频繁模式的出现概率,比如(啤酒,尿不湿)是一组频繁模式,它的支持度是4%,也就是说,在所有订单中,同时出现啤酒和尿不湿这两件商品的概率是4%。
置信度用于衡量频繁模式内部的关联关系,如果出现尿不湿的订单全部都包含啤酒,那么就可以说购买尿不湿后购买啤酒的置信度是100%;如果出现啤酒的订单中有20%包含尿不湿,那么就可以说购买啤酒后购买尿不湿的置信度是20%。
大型超市的商品种类数量数以万计,所有商品的组合更是一个天文数字;而电子商务网站的商品种类更多,历史订单数据同样也非常庞大,虽然我们有大数据技术,但是资源依然是有限的。
那我们应该从哪里考虑着手,可以使用最少的计算资源寻找到最小支持度的频繁模式?寻找满足最小支持度的频繁模式经典算法是Apriori算法,Apriori算法的步骤是:
第1步:设置最小支持度阈值。
第2步:寻找满足最小支持度的单件商品,也就是单件商品出现在所有订单中的概率不低于最小支持度。
第3步:从第2步找到的所有满足最小支持度的单件商品中,进行两两组合,寻找满足最小支持度的两件商品组合,也就是两件商品出现在同一个订单中概率不低于最小支持度。
第4步:从第3步找到的所有满足最小支持度的两件商品,以及第2步找到的满足最小支持度的单件商品进行组合,寻找满足最小支持度的三件商品组合。
第5步:以此类推,找到所有满足最小支持度的商品组合。
Apriori算法极大地降低了需要计算的商品组合数目,这个算法的原理是,如果一个商品组合不满足最小支持度,那么所有包含这个商品组合的其他商品组合也不满足最小支持度。所以从最小商品组合,也就是一件商品开始计算最小支持度,逐渐迭代,进而筛选出所有满足最小支持度的频繁模式。
通过关联分析,可以发现看似不相关商品的关联关系,并利用这些关系进行商品营销,比如我上面提到的啤酒和尿不湿的例子,一方面可以为用户提供购买便利;另一方面也能提高企业营收。专栏下一期还会讲到更多发现用户兴趣进行推荐的算法。
聚类
聚类就是对一批数据进行自动归类,如下图这样的一组数据,人眼一眼就可以识别出可以分为四组。
image但是如果这些数据不是画在平面上,而是以二维坐标的方式给你一堆数据,你还能看出来吗?
K-means是一种在给定分组个数后,能够对数据进行自动归类,即聚类的算法。计算过程请看图中这个例子。
image第1步:随机在图中取K个种子点,图中K=2,即图中的实心小圆点。
第2步:求图中所有点到这K个种子点的距离,假如一个点离种子点X最近,那么这个点属于X点群。在图中,可以看到A、B属于上方的种子点,C、D、E属于中部的种子点。
第3步:对已经分好组的两组数据,分别求其中心点。对于图中二维平面上的数据,求中心点最简单暴力的算法就是对当前同一个分组中所有点的X坐标和Y坐标分别求平均值,得到的<x,y>就是中心点。
第4步:重复第2步和第3步,直到每个分组的中心点不再移动。这时候,距每个中心点最近的点数据聚类为同一组数据。
K-means算法原理简单,在知道分组个数的情况下,效果非常好,是聚类经典算法。通过聚类分析我们可以发现事物的内在规律:具有相似购买习惯的用户群体被聚类为一组,一方面可以直接针对不同分组用户进行差别营销,线下渠道的话还可以根据分组情况进行市场划分;另一方面可以进一步分析,比如同组用户的其他统计特征还有哪些,并发现一些有价值的模式。
网友评论