需要用到的import
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import os
加载cifar10数据集
batch_size = 64
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4750, 0.4750, 0.4750], std=[0.2008, 0.2008, 0.2008])
])
train_data = datasets.CIFAR10(
root='cifar10',
train=True,
download=True,
transform=transform
)
test_data = datasets.CIFAR10(
root='cifar10',
train=False,
download=True,
transform=transform
)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
模型
class ResBlock(nn.Module):
def __init__(self, ch_in, ch_out, stride=1):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.extra(x) + out
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
nn.BatchNorm2d(64)
)
self.block1 = ResBlock(64, 128, stride=2)
self.block2 = ResBlock(128, 256, stride=2)
self.block3 = ResBlock(256, 512, stride=2)
self.block4 = ResBlock(512, 512, stride=2)
self.fc = nn.Linear(512 * 1 * 1, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = F.adaptive_avg_pool2d(x, [1, 1])
x = torch.flatten(x, 1)
out = self.fc(x)
return out
model = ResNet()
path = 'cifar10_state.pth'
if os.path.exists(path):
model.load_state_dict(torch.load(path))
损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-2)
训练方法
def train(model, data_loader, optimizer, epoch):
model.train()
for batch_idx, (x, label) in enumerate(data_loader):
optimizer.zero_grad()
output = model(x)
loss = criterion(output, label)
loss.backward()
optimizer.step()
if batch_idx % 20 == 0:
print('epoch', epoch)
print(batch_idx, 'loss:', loss.item())
测试方法
def test(model, test_loader):
model.eval()
total_correct = 0.
test_loss = 0.
with torch.no_grad():
for x, label in test_loader:
output = model(x)
test_loss += criterion(output, label)
pred = output.argmax(dim=1)
total_correct += pred.eq(label).sum().item()
total_size = len(test_loader.datasets)
test_loss /= total_size
total_correct /= total_size
print('test loss: ', test_loss)
print('acc: ', total_correct * 100)
开始训练
epochs = 2
for epoch in range(epochs):
train(model, train_loader, optimizer, epoch)
test(model, test_loader)
保存训练参数
torch.save(model.state_dict(), path)
完结, 记录一下。
网友评论