美文网首页Python
Pandas库常用方法、函数集合

Pandas库常用方法、函数集合

作者: python大数据分析 | 来源:发表于2023-11-21 21:00 被阅读0次

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。

    这里列举下Pandas中常用的函数和方法,方便大家查询使用。

    读取 写入

    • read_csv:读取CSV文件
    • to_csv:导出CSV文件
    • read_excel:读取Excel文件
    • to_excel:导出Excel文件
    • read_json:读取Json文件
    • to_json:导出Json文件
    • read_html:读取网页中HTML表格数据
    • to_html:导出网页HTML表格
    • read_clipboard:读取剪切板数据
    • to_clipboard:导出数据到剪切板
    • to_latex:导出数据为latex格式
    • read_sas:读取sas格式数据(一种统计分析软件数据格式)
    • read_spss:读取spss格式数据(一种统计分析软件数据格式)
    • read_stata:读取stata格式数据(一种统计分析软件数据格式)
    • read_sql:读取sql查询的数据(需要连接数据库),输出dataframe格式
    • to_sql:向数据库写入dataframe格式数据

    连接 合并 重塑

    • merge:根据指定键关联连接多个dataframe,类似sql中的join
    • concat:合并多个dataframe,类似sql中的union
    • pivot:按照指定的行列重塑表格
    • pivot_table:数据透视表,类似excel中的透视表
    • cut:将一组数据分割成离散的区间,适合将数值进行分类
    • qcut:和cut作用一样,不过它是将数值等间距分割
    • crosstab:创建交叉表,用于计算两个或多个因子之间的频率
    • join:通过索引合并两个dataframe
    • stack: 将数据框的列“堆叠”为一个层次化的Series
    • unstack: 将层次化的Series转换回数据框形式
    • append: 将一行或多行数据追加到数据框的末尾

    分组 聚合 转换 过滤

    • groupby:按照指定的列或多个列对数据进行分组
    • agg:对每个分组应用自定义的聚合函数
    • transform:对每个分组应用转换函数,返回与原始数据形状相同的结果
    • rank:计算元素在每个分组中的排名
    • filter:根据分组的某些属性筛选数据
    • sum:计算分组的总和
    • mean:计算分组的平均值
    • median:计算分组的中位数
    • min和 max:计算分组的最小值和最大值
    • count:计算分组中非NA值的数量
    • size:计算分组的大小
    • std和 var:计算分组的标准差和方差
    • describe:生成分组的描述性统计摘要
    • first和 last:获取分组中的第一个和最后一个元素
    • nunique:计算分组中唯一值的数量
    • cumsum、cummin、cummax、cumprod:计算分组的累积和、最小值、最大值、累积乘积

    数据清洗

    • dropna: 丢弃包含缺失值的行或列
    • fillna: 填充或替换缺失值
    • interpolate: 对缺失值进行插值
    • duplicated: 标记重复的行
    • drop_duplicates: 删除重复的行
    • str.strip: 去除字符串两端的空白字符
    • str.lower和 str.upper: 将字符串转换为小写或大写
    • str.replace: 替换字符串中的特定字符
    • astype: 将一列的数据类型转换为指定类型
    • sort_values: 对数据框按照指定列进行排序
    • rename: 对列或行进行重命名
    • drop: 删除指定的列或行

    数据可视化

    • pandas.DataFrame.plot.area:绘制堆积图
    • pandas.DataFrame.plot.bar:绘制柱状图
    • pandas.DataFrame.plot.barh:绘制水平条形图
    • pandas.DataFrame.plot.box:绘制箱线图
    • pandas.DataFrame.plot.density:绘制核密度估计图
    • pandas.DataFrame.plot.hexbin:绘制六边形分箱图
    • pandas.DataFrame.plot.hist:绘制直方图
    • pandas.DataFrame.plot.line:绘制线型图
    • pandas.DataFrame.plot.pie:绘制饼图
    • pandas.DataFrame.plot.scatter:绘制散点图
    • pandas.plotting.andrews_curves:绘制安德鲁曲线,用于可视化多变量数据
    • pandas.plotting.autocorrelation_plot:绘制时间序列自相关图
    • pandas.plotting.bootstrap_plot:用于评估统计数据的不确定性,例如均值,中位数,中间范围等
    • pandas.plotting.lag_plot:绘制时滞图,用于检测时间序列数据中的模式、趋势和季节性
    • pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系
    • pandas.plotting.scatter_matrix:绘制散点矩阵图
    • pandas.plotting.table:绘制表格形式可视化图

    日期时间

    • to_datetime: 将输入转换为Datetime类型
    • date_range: 生成日期范围
    • to_timedelta: 将输入转换为Timedelta类型
    • timedelta_range: 生成时间间隔范围
    • shift: 沿着时间轴将数据移动
    • resample: 对时间序列进行重新采样
    • asfreq: 将时间序列转换为指定的频率
    • cut: 将连续数据划分为离散的箱
    • period_range: 生成周期范围
    • infer_freq: 推断时间序列的频率
    • tz_localize: 设置时区
    • tz_convert: 转换时区
    • dt: 用于访问Datetime中的属性
    • day_name, month_name: 获取日期的星期几和月份的名称
    • total_seconds: 计算时间间隔的总秒数
    • rolling: 用于滚动窗口的操作
    • expanding: 用于展开窗口的操作
    • at_time, between_time: 在特定时间进行选择
    • truncate: 截断时间序列

    相关文章

      网友评论

        本文标题:Pandas库常用方法、函数集合

        本文链接:https://www.haomeiwen.com/subject/wizvwdtx.html