美文网首页
基于flink,kafka实现的热门商品实时统计

基于flink,kafka实现的热门商品实时统计

作者: 大道至简_6a43 | 来源:发表于2020-02-02 14:21 被阅读0次

基本流程可以总结为一下

1. 创建env

2. 定义Time类型

3. 设置并行度

4. 获取流,可以是使用readTextFile("path"),也可以是用

.addSource( new FlinkKafkaConsumer[String]("hotitems", new SimpleStringSchema(), properties) )消费kafka的数据,properties需要前面定义好

new Properity()

5. 通过map将每一行的数据切分并转换为对应的类型

6. 指定时间戳和水印

7. .filter(_.behavior == "pv")

8. .keyBy("itemId")

9.  .timeWindow(Time.hours(1), Time.minutes(5))

10. .aggregate( new CountAgg(), new WindowResultFunction() )//此处需要实现这两个方法,分别继承对应的类

11. .keyBy("windowEnd")

12. .process( new TopNHotItems(3))//此处也需要完成该方法

13. .print()

****************************************************************************************************************

import java.sql.Timestamp

import java.util.Properties

import org.apache.flink.api.common.functions.AggregateFunction

import org.apache.flink.api.common.serialization.SimpleStringSchema

import org.apache.flink.api.common.state.{ListState, ListStateDescriptor}

import org.apache.flink.api.java.tuple.{Tuple, Tuple1}

import org.apache.flink.configuration.Configuration

import org.apache.flink.streaming.api.TimeCharacteristic

import org.apache.flink.streaming.api.functions.KeyedProcessFunction

import org.apache.flink.streaming.api.scala._

import org.apache.flink.streaming.api.scala.function.WindowFunction

import org.apache.flink.streaming.api.windowing.time.Time

import org.apache.flink.streaming.api.windowing.windows.TimeWindow

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer

import org.apache.flink.util.Collector

import scala.collection.mutable.ListBuffer

// 输入数据样例类

case class UserBehavior( userId: Long, itemId: Long, categoryId: Int, behavior:String, timestamp: Long )

// 输出数据样例类

case class ItemViewCount( itemId: Long, windowEnd: Long, count: Long )

object HotItems {

def main(args: Array[String]): Unit = {

val properties =new Properties()

properties.setProperty("bootstrap.servers","localhost:9092")

properties.setProperty("group.id","consumer-group")

properties.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer")

properties.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer")

properties.setProperty("auto.offset.reset","latest")

// 创建一个env

    val env = StreamExecutionEnvironment.getExecutionEnvironment

    // 显式地定义Time类型

    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

env.setParallelism(1)

val stream = env

//  .readTextFile("D:\\Projects\\BigData\\UserBehaviorAnalysis\\HotItemsAnalysis\\src\\main\\resources\\UserBehavior.csv")

 .addSource(new FlinkKafkaConsumer[String]("hotitems",new SimpleStringSchema(), properties) )

.map(line => {

val linearray = line.split(",")

UserBehavior( linearray(0).toLong, linearray(1).toLong, linearray(2).toInt, linearray(3), linearray(4).toLong )

})

// 指定时间戳和watermark

      .assignAscendingTimestamps(_.timestamp *1000)

.filter(_.behavior =="pv")

.keyBy("itemId")

.timeWindow(Time.hours(1), Time.minutes(5))

.aggregate(new CountAgg(),new WindowResultFunction() )

.keyBy("windowEnd")

.process(new TopNHotItems(3))

.print()

// 调用execute执行任务

    env.execute("Hot Items Job")

}

// 自定义实现聚合函数

  class CountAggextends AggregateFunction[UserBehavior, Long, Long]{

override def add(value: UserBehavior, accumulator: Long): Long = accumulator +1

    override def createAccumulator(): Long =0L

    override def getResult(accumulator: Long): Long = accumulator

override def merge(a: Long, b: Long): Long = a + b

}

// 自定义实现Window Function,输出ItemViewCount格式

  class WindowResultFunctionextends WindowFunction[Long, ItemViewCount, Tuple, TimeWindow]{

override def apply(key: Tuple, window: TimeWindow, input:Iterable[Long], out: Collector[ItemViewCount]): Unit = {

val itemId: Long = key.asInstanceOf[Tuple1[Long]].f0

      val count = input.iterator.next()

out.collect(ItemViewCount(itemId, window.getEnd, count))

}

}

// 自定义实现process function

  class TopNHotItems(topSize: Int)extends KeyedProcessFunction[Tuple, ItemViewCount,String]{

// 定义状态ListState

    private var itemState: ListState[ItemViewCount] = _

override def open(parameters: Configuration): Unit = {

super.open(parameters)

// 命名状态变量的名字和类型

      val itemStateDesc =new ListStateDescriptor[ItemViewCount]("itemState",classOf[ItemViewCount])

itemState = getRuntimeContext.getListState(itemStateDesc)

}

override def processElement(i: ItemViewCount, context: KeyedProcessFunction[Tuple, ItemViewCount,String]#Context, collector: Collector[String]): Unit = {

itemState.add(i)

// 注册定时器,触发时间定为 windowEnd + 1,触发时说明window已经收集完成所有数据

      context.timerService.registerEventTimeTimer( i.windowEnd +1 )

}

// 定时器触发操作,从state里取出所有数据,排序取TopN,输出

    override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Tuple, ItemViewCount,String]#OnTimerContext, out: Collector[String]): Unit = {

// 获取所有的商品点击信息

      val allItems: ListBuffer[ItemViewCount] = ListBuffer()

import  scala.collection.JavaConversions._

for(item <-itemState.get){

allItems += item

}

// 清除状态中的数据,释放空间

      itemState.clear()

// 按照点击量从大到小排序,选取TopN

      val sortedItems = allItems.sortBy(_.count)(Ordering.Long.reverse).take(topSize)

// 将排名数据格式化,便于打印输出

      val result:StringBuilder =new StringBuilder

result.append("====================================\n")

result.append("时间:").append(new Timestamp(timestamp -1)).append("\n")

for( i <- sortedItems.indices ){

val currentItem: ItemViewCount = sortedItems(i)

// 输出打印的格式 e.g.  No1:  商品ID=12224  浏览量=2413

        result.append("No").append(i+1).append(":")

.append("  商品ID=").append(currentItem.itemId)

.append("  浏览量=").append(currentItem.count).append("\n")

}

result.append("====================================\n\n")

// 控制输出频率

      Thread.sleep(100)

out.collect(result.toString)

}

}

}

相关文章

网友评论

      本文标题:基于flink,kafka实现的热门商品实时统计

      本文链接:https://www.haomeiwen.com/subject/wkkqxhtx.html