ImagePipeline是Fresco读取数据的整个调度系统,作为一个图片加载组件,主要工作流程为:
- 检查内存缓存
- 检查磁盘缓存
-
文件读取或网络请求,并存储到各个缓存。
官方流程图如下:
imagepipeline.png
这和主要的图片加载逻辑基本类似,既然如此,那我们就从图片加载组件最主要的两个方面入手分析源码:
1) 如何自定义缓存线程和加载线程的配置;
2) 缓存设计算法。
首先看第一个问题,要看ImagePipeline的配置,我们来分析一下ImagePipelineConfig的源码:
@Nullable private final AnimatedImageFactory mAnimatedImageFactory;
private final Bitmap.Config mBitmapConfig;
private final Supplier<MemoryCacheParams> mBitmapMemoryCacheParamsSupplier; //内存缓存数据的策略
private final CacheKeyFactory mCacheKeyFactory; //缓存键值对的获取
private final Context mContext;
private final boolean mDownsampleEnabled;
private final boolean mDecodeMemoryFileEnabled;
private final FileCacheFactory mFileCacheFactory; // 文件缓存键值对
private final Supplier<MemoryCacheParams> mEncodedMemoryCacheParamsSupplier; //原码内存缓存参数
private final ExecutorSupplier mExecutorSupplier; //获取线程池
private final ImageCacheStatsTracker mImageCacheStatsTracker;//Cache埋点工具
@Nullable private final ImageDecoder mImageDecoder; //解码器
private final Supplier<Boolean> mIsPrefetchEnabledSupplier;
private final DiskCacheConfig mMainDiskCacheConfig;//磁盘缓存配置
private final MemoryTrimmableRegistry mMemoryTrimmableRegistry;
private final NetworkFetcher mNetworkFetcher; //网络获取器
@Nullable private final PlatformBitmapFactory mPlatformBitmapFactory;
private final PoolFactory mPoolFactory;
private final ProgressiveJpegConfig mProgressiveJpegConfig; //渐进图片配置
private final Set<RequestListener> mRequestListeners;
private final boolean mResizeAndRotateEnabledForNetwork;
private final DiskCacheConfig mSmallImageDiskCacheConfig;//小图缓存配置
private final ImagePipelineExperiments mImagePipelineExperiments;
...
ImagePipeline的可配置项如下:
ImagePipelineConfig config = ImagePipelineConfig.newBuilder()
.setBitmapMemoryCacheParamsSupplier(bitmapCacheParamsSupplier) //bitmap缓存配置
.setCacheKeyFactory(cacheKeyFactory) //设置缓存键值对
.setEncodedMemoryCacheParamsSupplier(encodedCacheParamsSupplier)//设置原码内存缓存配置
.setExecutorSupplier(executorSupplier) //各种线程池
.setImageCacheStatsTracker(imageCacheStatsTracker)//缓存打点
.setMainDiskCacheConfig(mainDiskCacheConfig) //主磁盘缓存
.setMemoryTrimmableRegistry(memoryTrimmableRegistry)
.setNetworkFetchProducer(networkFetchProducer)//网络请求配置
.setPoolFactory(poolFactory)
.setProgressiveJpegConfig(progressiveJpegConfig)//渐进图片配置
.setRequestListeners(requestListeners)//请求监听
.setSmallImageDiskCacheConfig(smallImageDiskCacheConfig)//小图缓存
.build();
Fresco.initialize(context, config);
ImagePipeline用到了三个缓存,首先是DiskCache,然后还有两个MemoryCache,分别是保存已解码Bitmap的和保存EncodedImage的缓存。Fresco将未解码的原始数据也进行了内存缓存,然后根据是否旋转或者缩放以及解码质量进行解码成bitmap存放内存空间,其实在我所接触的应用场景中这部分内容其实是不太需要的,因为一张图片基本上只在一个地方使用,即使多处使用也不太需要这么复杂的变换,可能Fresco想的比较周到吧。
内存缓存使用的是通用的lru算法(最近最少使用原则),内存缓存的设计代码在CountingMemoryCache,CountingMemoryCache是一个基于LRU策略来管理缓存中元素的一个类,它实现的trim()方法可以根据Type的不同来采取不同策略的回收为:
/**
* Layer of memory cache stack responsible for managing eviction of the the cached items.
*
* <p> This layer is responsible for LRU eviction strategy and for maintaining the size boundaries
* of the cached items.
*
* <p> Only the exclusively owned elements, i.e. the elements not referenced by any client, can be
* evicted.
*
* @param <K> the key type
* @param <V> the value type
*/
@ThreadSafe
public class CountingMemoryCache<K, V> implements MemoryCache<K, V>, MemoryTrimmable {
...//省略代码
/** Trims the cache according to the specified trimming strategy and the given trim type. */
@Override
public void trim(MemoryTrimType trimType) {
ArrayList<Entry<K, V>> oldEntries;
final double trimRatio = mCacheTrimStrategy.getTrimRatio(trimType);
synchronized (this) {
int targetCacheSize = (int) (mCachedEntries.getSizeInBytes() * (1 - trimRatio));
int targetEvictionQueueSize = Math.max(0, targetCacheSize - getInUseSizeInBytes());
oldEntries = trimExclusivelyOwnedEntries(Integer.MAX_VALUE, targetEvictionQueueSize);
makeOrphans(oldEntries);
}
maybeClose(oldEntries);
maybeNotifyExclusiveEntryRemoval(oldEntries);
maybeUpdateCacheParams();
maybeEvictEntries();
}
...//省略代码
}
Fresco使用的黑科技还有很多,它是一份巨大的宝藏等着挖掘,我只是粗浅的总结了部分我get到的点,以后进一步深入学习中再和大家分享。
网友评论