背景
从区块链的角度来说,kafka的方式是违背初衷的,试问中心化的kafka部署在哪里合适,云?第三方机构?可以说哪都不合适,一个精心包装的去中心化的架构里面却包含了中心化的服务,真是如鲠在喉,不吐不快。好在,Fabric早就意识到了这个问题,很早就在计划要引入raft。一个公开,平等的联盟链体系里,每个企业都能部署自己的排序服务。
在分布式一致性算法方面raft可以说非常成熟,算法本身非常精妙。想要搞懂这部分实现,还是需要一些背景知识的,强烈建议先去学习下。
Fabric的这部分主要是用到了etcd的raft库的实现,实际就是raft算法的标准实现,至于网络通讯及存储部分,则留给应用层自己。之后你可以看到Fabric还是做了不少工作,以后如果etcdraft能独立出来,我想更有利于应用接入。
名词解释
名词 | 解释 |
---|---|
Term | 任期 |
Vote | 选举投票 |
Entry | 日志数据条目 |
candidate | 候选人 |
leader | 领导者 |
follower | 跟随者 |
commit | 提交 |
propose | 提议 |
配置
Orderer: &OrdererDefaults
OrdererType: etcdraft
Addresses:
- orderer1st-ordererorg:7050
- orderer2nd-ordererorg:7050
- orderer3rd-ordererorg:7050
BatchTimeout: 2s
BatchSize:
MaxMessageCount: 500
AbsoluteMaxBytes: 98 MB
PreferredMaxBytes: 512 KB
EtcdRaft:
Consenters:
- Host: orderer1st-ordererorg
Port: 7050
ClientTLSCert: ...
ServerTLSCert: ...
- Host: orderer2nd-ordererorg
Port: 7050
ClientTLSCert: ...
ServerTLSCert: ...
- Host: orderer3rd-ordererorg
Port: 7050
ClientTLSCert: ...
ServerTLSCert: ...
Options:
TickInterval: 100
ElectionTick: 10
HeartbeatTick: 1
MaxInflightMsgs: 256
MaxSizePerMsg: 1048576
SnapshotInterval: 500
可以看到Raftnode就是Orderer自己啦,并没有在Orderer上再建立Raft集群的概念,跟kafka还是有区别。
Raft
Node
1552147356624.pngRaft库有提供Node来与应用层互动。
名词 解释 Tick 这个就像是Raft的发条,要每隔一段时间来调度这里,驱动选举和心跳 Advance 告诉raft,上次推送的ready,我已经处理完毕,准备好处理下一个Ready Ready Raft世界的风吹草动会通知这里,这非常重要,后面会讲到 Step 将收到的消息写入状态机 ProposeConfChange 提交配置变更 Propose 提议写入数据到日志中,可能会返回错误。 Campaign 调用该函数将驱动节点进入候选人状态,将竞争leader。 ApplyConfChange 应用配置变更
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// ReadStates can be used for node to serve linearizable read requests locally
// when its applied index is greater than the index in ReadState.
// Note that the readState will be returned when raft receives msgReadIndex.
// The returned is only valid for the request that requested to read.
ReadStates []ReadState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
// If it contains a MsgSnap message, the application MUST report back to raft
// when the snapshot has been received or has failed by calling ReportSnapshot.
Messages []pb.Message
// MustSync indicates whether the HardState and Entries must be synchronously
// written to disk or if an asynchronous write is permissible.
MustSync bool
}
在Raft世界里一切风吹草动差不多都在这里了,应用层要跟raft来互动的话,这里是一切动作的起源。搞懂这些字段的作用是理解实现的关键。
名词 解释 SoftState 记录的是当前任期的leader是谁,以及该节点在raft集群的角色,易变的状态不需要保存 HardState 需要写入持久化存储中,包括:节点当前Term、Vote、Commit Entries 在向其他集群发送消息之前需要先写入持久化存储的日志数据 Snapshot 需要写入持久化存储中的快照数据 CommittedEntries 需要输入到状态机中的数据,这些数据之前已经被保存到持久化存储中了 Messages 在entries被写入持久化存储中以后,需要发送出去的数据
Raft->Orderer
case rd := <-n.Ready():
if err := n.storage.Store(rd.Entries, rd.HardState, rd.Snapshot); err != nil {
n.logger.Panicf("Failed to persist etcd/raft data: %s", err)
}
if !raft.IsEmptySnap(rd.Snapshot) {
n.chain.snapC <- &rd.Snapshot
}
// skip empty apply
if len(rd.CommittedEntries) != 0 || rd.SoftState != nil {
n.chain.applyC <- apply{rd.CommittedEntries, rd.SoftState}
}
n.Advance()
// TODO(jay_guo) leader can write to disk in parallel with replicating
// to the followers and them writing to their disks. Check 10.2.1 in thesis
n.send(rd.Messages)
这里处理了Raft发来的Ready通知。
- 首先不管怎么样,只要收到Ready,先把Entries,HardState,Snapshot存储在本地。要注意存下来并不代表会写入状态机,先收下来比较重要,Raft之后会保证哪些是需要应用到状态机的。因为Raft库没有存储支持,所以需要应用进行接管。
- 如果含有snapshot快照,通知snapC,这里后面再讲
- len(rd.CommittedEntries) != 0 || rd.SoftState != nil,这里说明如果有CommittedEntries或SoftState变更,通知applyC
- 全部处理完,Advance,通知Raft处理完毕,可以发下一个Ready了。
- 因为Raft库没有网络支持,所以node间的消息交互需要应用进行接管。这个后面再讲。
存储
func (rs *RaftStorage) Store(entries []raftpb.Entry, hardstate raftpb.HardState, snapshot raftpb.Snapshot) error {
if err := rs.wal.Save(hardstate, entries); err != nil {
return err
}
if !raft.IsEmptySnap(snapshot) {
if err := rs.saveSnap(snapshot); err != nil {
return err
}
if err := rs.ram.ApplySnapshot(snapshot); err != nil {
if err == raft.ErrSnapOutOfDate {
rs.lg.Warnf("Attempted to apply out-of-date snapshot at Term %d and Index %d",
snapshot.Metadata.Term, snapshot.Metadata.Index)
} else {
rs.lg.Fatalf("Unexpected programming error: %s", err)
}
}
}
if err := rs.ram.Append(entries); err != nil {
return err
}
return nil
}
- HardState和Entries写入WAL
- Snapshot写入snap
- Snapshot和Entries放到MemoryStorage,可以看成是storage的cache层
快照
case sn := <-c.snapC:
if sn.Metadata.Index <= c.appliedIndex {
c.logger.Debugf("Skip snapshot taken at index %d, because it is behind current applied index %d", sn.Metadata.Index, c.appliedIndex)
break
}
b := utils.UnmarshalBlockOrPanic(sn.Data)
c.lastSnapBlockNum = b.Header.Number
c.confState = sn.Metadata.ConfState
c.appliedIndex = sn.Metadata.Index
if err := c.catchUp(sn); err != nil {
sn.Metadata.Term, sn.Metadata.Index, err)
}
- 如果状态机的index比快照还要新,那继续下去没有意义了
- 将快照的数据给chain做更新
- 注意这里的confState,里面记录了成员列表,以及learner列表。
- 基本上收到快照的都是不成器的follower或新来的learner,要努力跟leader保持一致,所以要调用catchUp
- 多提一句,learner不参加选举,是因为它落后太多了,为了不扰乱民主程序的正常进行,先靠边站,等你跟我一致了,你再来把。
func (c *Chain) catchUp(snap *raftpb.Snapshot) error {
b, err := utils.UnmarshalBlock(snap.Data)
if err != nil {
return errors.Errorf("failed to unmarshal snapshot data to block: %s", err)
}
if c.lastBlock.Header.Number >= b.Header.Number {
c.logger.Warnf("Snapshot is at block %d, local block number is %d, no sync needed", b.Header.Number, c.lastBlock.Header.Number)
return nil
}
puller, err := c.createPuller()
if err != nil {
return errors.Errorf("failed to create block puller: %s", err)
}
defer puller.Close()
var block *common.Block
next := c.lastBlock.Header.Number + 1
c.logger.Infof("Catching up with snapshot taken at block %d, starting from block %d", b.Header.Number, next)
for next <= b.Header.Number {
block = puller.PullBlock(next)
if block == nil {
return errors.Errorf("failed to fetch block %d from cluster", next)
}
if utils.IsConfigBlock(block) {
c.support.WriteConfigBlock(block, nil)
} else {
c.support.WriteBlock(block, nil)
}
next++
}
c.lastBlock = block
c.logger.Infof("Finished syncing with cluster up to block %d (incl.)", b.Header.Number)
return nil
}
- 这里有个技巧是快照是怎么构建的,这里后面会讲到,其实就是保存的那段快照区间的最后一个block。
- 这里用到了Puller,这里底层就是对接的Orderer的deliver服务拉取block。
- 下面就很明显了,去拉取该区间的block的同时写入本地账本,并更新lastblock标记位。
applyC
SoftState
case app := <-c.applyC:
if app.soft != nil {
newLeader := atomic.LoadUint64(&app.soft.Lead) // etcdraft requires atomic access
if newLeader != soft.Lead {
c.logger.Infof("Raft leader changed: %d -> %d", soft.Lead, newLeader)
c.Metrics.LeaderChanges.Add(1)
atomic.StoreUint64(&c.lastKnownLeader, newLeader)
if newLeader == c.raftID {
propC, cancelProp = becomeLeader()
}
if soft.Lead == c.raftID {
becomeFollower()
}
}
...
soft = raft.SoftState{Lead: newLeader, RaftState: app.soft.RaftState}
// notify external observer
select {
case c.observeC <- soft:
default:
}
}
- 收到这个通知,就代表可能变天了,要换领导。
- 看下新来的领导任命书跟现在所知的是不是一个人,如果不是,不好意思就是这么现实,开始工作交接。
- 看下是不是自己当选,如是becomeLeader。不用怀疑。
- 如果上次是本人当选,这次换人的话,那leader职权得立即停止,becomeFollower。
- 记录最新得softstate通知observeC,不过当前外部没有人关注这个事情。
becomeLeader
becomeLeader := func() (chan<- *common.Block, context.CancelFunc) {
c.Metrics.IsLeader.Set(1)
c.blockInflight = 0
c.justElected = true
submitC = nil
ch := make(chan *common.Block, c.opts.MaxInflightMsgs)
// if there is unfinished ConfChange, we should resume the effort to propose it as
// new leader, and wait for it to be committed before start serving new requests.
if cc := c.getInFlightConfChange(); cc != nil {
// The reason `ProposeConfChange` should be called in go routine is documented in `writeConfigBlock` method.
go func() {
if err := c.Node.ProposeConfChange(context.TODO(), *cc); err != nil {
c.logger.Warnf("Failed to propose configuration update to Raft node: %s", err)
}
}()
c.confChangeInProgress = cc
c.configInflight = true
}
// Leader should call Propose in go routine, because this method may be blocked
// if node is leaderless (this can happen when leader steps down in a heavily
// loaded network). We need to make sure applyC can still be consumed properly.
ctx, cancel := context.WithCancel(context.Background())
go func(ctx context.Context, ch <-chan *common.Block) {
for {
select {
case b := <-ch:
data := utils.MarshalOrPanic(b)
if err := c.Node.Propose(ctx, data); err != nil {
c.logger.Errorf("Failed to propose block %d to raft and discard %d blocks in queue: %s", b.Header.Number, len(ch), err)
return
}
c.logger.Debugf("Proposed block %d to raft consensus", b.Header.Number)
case <-ctx.Done():
c.logger.Debugf("Quit proposing blocks, discarded %d blocks in the queue", len(ch))
return
}
}
}(ctx, ch)
return ch, cancel
}
其实最主要就是后面的函数,外部调用propC, cancelProp = becomeLeader(),会循环监听propC通道,然后将data用Node.Propose发给Raft,这个后面再讲。
再Raft的世界里,leader就是王道,它的话就是圣旨,只有leader才有资格Propose东西出去。所以选上的最重要的事情就是拿到与Raft的沟通权力。
如果有配置未提交,c.Node.ProposeConfChange
这里什么地方会通知到ch,这里卖个关子,后面会讲到。
becomeFollower
becomeFollower := func() {
cancelProp()
c.blockInflight = 0
_ = c.support.BlockCutter().Cut()
stop()
submitC = c.submitC
bc = nil
c.Metrics.IsLeader.Set(0)
}
交出权力的心情是痛苦的,我们看下做了什么?
-
原来以为cancelProp会断开与propC的关系,现在看来do nothing,一是从理论上来说,follower不会有propose的机会,二是给最后一次的超时补偿做准备。
-
blockInflight是代表说leader会记录propose出去的block,是不是在Raft里面形成了大多数一致,如果达成一致,leader会在本地commit,这个时候才会移除掉这条记录。
-
c.support.BlockCutter().Cut(), 这里有个疑问,这种调法会清理掉pendingBatch,真的这么肯定到这里不会剩下没有处理完的么?
func (r *receiver) Cut() []*cb.Envelope { r.Metrics.BlockFillDuration.With("channel", r.ChannelID).Observe(time.Since(r.PendingBatchStartTime).Seconds()) r.PendingBatchStartTime = time.Time{} batch := r.pendingBatch r.pendingBatch = nil r.pendingBatchSizeBytes = 0 return batch }
-
stop,既然上面已经清掉了pending,那这里再stop pendingbatch的超时处理,也就没有什么问题。
-
submitC通道是代表接受客户端的数据提交,这个后面再讲。
-
bc就是blockcreator,里面保存的最近一次创建block的信息,既然你都卸任了,这些也就没什么意义了。
CommittedEntries
func (c *Chain) apply(ents []raftpb.Entry) {
if len(ents) == 0 {
return
}
if ents[0].Index > c.appliedIndex+1 {
c.logger.Panicf("first index of committed entry[%d] should <= appliedIndex[%d]+1", ents[0].Index, c.appliedIndex)
}
var appliedb uint64
var position int
for i := range ents {
switch ents[i].Type {
case raftpb.EntryNormal:
if len(ents[i].Data) == 0 {
break
}
// We need to strictly avoid re-applying normal entries,
// otherwise we are writing the same block twice.
if ents[i].Index <= c.appliedIndex {
c.logger.Debugf("Received block with raft index (%d) <= applied index (%d), skip", ents[i].Index, c.appliedIndex)
break
}
block := utils.UnmarshalBlockOrPanic(ents[i].Data)
c.writeBlock(block, ents[i].Index)
appliedb = block.Header.Number
c.Metrics.CommittedBlockNumber.Set(float64(appliedb))
position = i
c.accDataSize += uint32(len(ents[i].Data))
...
if c.accDataSize >= c.sizeLimit {
select {
case c.gcC <- &gc{index: c.appliedIndex, state: c.confState, data: ents[position].Data}:
c.logger.Infof("Accumulated %d bytes since last snapshot, exceeding size limit (%d bytes), "+
"taking snapshot at block %d, last snapshotted block number is %d",
c.accDataSize, c.sizeLimit, appliedb, c.lastSnapBlockNum)
c.accDataSize = 0
c.lastSnapBlockNum = appliedb
c.Metrics.SnapshotBlockNumber.Set(float64(appliedb))
default:
c.logger.Warnf("Snapshotting is in progress, it is very likely that SnapshotInterval is too small")
}
}
return
}
再Raft的世界里面,确认提交的有两种entry啦,一种就是所谓的普通,一种就是配置变更。
- 遍历普通日志,如果是已经写入状态机,也就是写入本地账本的block, 那当然要拒绝,免得重复。
- 接下就是writeblock到本地啦。
- 然后记录这次处理到第几个了,最后再统计这次总共处理的datasize,就是blocksize累加啦。这个之后会有妙用,后面再讲。
下面我们看下writeBlock的逻辑
writeBlock
func (c *Chain) writeBlock(block *common.Block, index uint64) {
if c.blockInflight > 0 {a
c.blockInflight-- // only reduce on leader
}
c.lastBlock = block
c.logger.Debugf("Writing block %d to ledger", block.Header.Number)
if utils.IsConfigBlock(block) {
c.writeConfigBlock(block, index)
return
}
c.raftMetadataLock.Lock()
c.opts.RaftMetadata.RaftIndex = index
m := utils.MarshalOrPanic(c.opts.RaftMetadata)
c.raftMetadataLock.Unlock()
c.support.WriteBlock(block, m)
}
- blockInflight前面讲过了,这里收到代表我发出去的propose收到了群众的强烈支持,那这个提案就过了。剩下就是好好把提案落地就好。
- 配置部分有机会单独讲,本身不影响主要的流程,这里先跳过
- c.support.WriteBlock(block, m),就是写本地账本啦。
if c.accDataSize >= c.sizeLimit {
select {
case c.gcC <- &gc{index: c.appliedIndex, state: c.confState, data: ents[position].Data}:
c.logger.Infof("Accumulated %d bytes since last snapshot, exceeding size limit (%d bytes), "+
"taking snapshot at block %d, last snapshotted block number is %d",
c.accDataSize, c.sizeLimit, appliedb, c.lastSnapBlockNum)
c.accDataSize = 0
c.lastSnapBlockNum = appliedb
c.Metrics.SnapshotBlockNumber.Set(float64(appliedb))
default:
c.logger.Warnf("Snapshotting is in progress, it is very likely that SnapshotInterval is too small")
}
}
func (rs *RaftStorage) TakeSnapshot(i uint64, cs raftpb.ConfState, data []byte) error {
rs.lg.Debugf("Creating snapshot at index %d from MemoryStorage", i)
snap, err := rs.ram.CreateSnapshot(i, &cs, data)
if err != nil {
return errors.Errorf("failed to create snapshot from MemoryStorage: %s", err)
}
if err = rs.saveSnap(snap); err != nil {
return err
}
rs.snapshotIndex = append(rs.snapshotIndex, snap.Metadata.Index)
// Keep some entries in memory for slow followers to catchup
if i > rs.SnapshotCatchUpEntries {
compacti := i - rs.SnapshotCatchUpEntries
rs.lg.Debugf("Purging in-memory raft entries prior to %d", compacti)
if err = rs.ram.Compact(compacti); err != nil {
if err == raft.ErrCompacted {
rs.lg.Warnf("Raft entries prior to %d are already purged", compacti)
} else {
rs.lg.Fatalf("Failed to purge raft entries: %s", err)
}
}
}
rs.lg.Infof("Snapshot is taken at index %d", i)
rs.gc()
return nil
}
- 如果累加的accDataSize超过阈值,这里会将写入的最后一个block的相关信息通知给gcC通道。
- gcC再转调takeSnapshot
- TakeSnapshot里面很简单,就是生成snapshot,包括任期,最后一次的日志下标以及block。保存到本地snap。
- rs.gc里面涉及到一个阈值,MaxSnapshotFiles,如果超过,需要清理文件。首当其冲的是wal,看下是不是有比快照还要老的日志,有的话清掉。既然都有快照了,wal日志也就没有存在的意义了。Raft的世界里index是一切衡量的基础。snap文件就简单,超过多少就删多少。
if c.justElected {
msgInflight := c.Node.lastIndex() > c.appliedIndex
if msgInflight {
c.logger.Debugf("There are in flight blocks, new leader should not serve requests")
continue
}
if c.configInflight {
c.logger.Debugf("There is config block in flight, new leader should not serve requests")
continue
}
c.logger.Infof("Start accepting requests as Raft leader at block %d", c.lastBlock.Header.Number)
bc = &blockCreator{
hash: c.lastBlock.Header.Hash(),
number: c.lastBlock.Header.Number,
logger: c.logger,
}
submitC = c.submitC
c.justElected = false
} else if c.configInflight {
c.logger.Info("Config block or ConfChange in flight, pause accepting transaction")
submitC = nil
} else if c.blockInflight < c.opts.MaxInflightMsgs {
submitC = c.submitC
}
- justElected就代表刚选上那会。过程自己体会。
- msgInflight就代表有MemoryStorage的entry还没有写入账本啦,不宜出门接客
- configInflight也是一样,有Raft配置变更或config block进来还没有生效前,更加不宜出门接客
- 如果前面都过了,submitC = c.submitC就代表结果submitC通道,正式开始开门迎客。需要注意的是之后可进不到这里哦。
- 如果之前有过配置变更的干扰,c.blockInflight < c.opts.MaxInflightMsgs这里就是给她重新出门接客的机会。
- 还记不记得becomeFollower的时候立马就能接客,而leader条件很多,说明leader要求高嘛。
到这里基本把Raft到Orderer的处理都讲完了。
Messages
n.Advance()
// TODO(jay_guo) leader can write to disk in parallel with replicating
// to the followers and them writing to their disks. Check 10.2.1 in thesis
n.send(rd.Messages)
Advance的意思是这波Ready我已经处理完了,我准备好再处理
前面提到过,EtcdRaft只关注算法本身,集群节点间怎么通讯,不是它关注的点,不过当然了,消息要发给谁,它是知道的,只不过想让你代劳而已。
func (n *node) send(msgs []raftpb.Message) {
n.unreachableLock.RLock()
defer n.unreachableLock.RUnlock()
for _, msg := range msgs {
if msg.To == 0 {
continue
}
status := raft.SnapshotFinish
msgBytes := utils.MarshalOrPanic(&msg)
err := n.rpc.SendConsensus(msg.To, &orderer.ConsensusRequest{Channel: n.chainID, Payload: msgBytes})
if err != nil {
// TODO We should call ReportUnreachable if message delivery fails
n.logSendFailure(msg.To, err)
status = raft.SnapshotFailure
} else if _, ok := n.unreachable[msg.To]; ok {
n.logger.Infof("Successfully sent StepRequest to %d after failed attempt(s)", msg.To)
delete(n.unreachable, msg.To)
}
if msg.Type == raftpb.MsgSnap {
n.ReportSnapshot(msg.To, status)
}
}
}
还记得之前将snap写入存储吧?到这里一般的情况可以将状态置为SnapshotFinish,但是保险起见,这波消息只要发送失败就认为这次快照存储失败,情愿重发一次。
最后ReportSnapshot就是用来向Leader报告你发给我的快照的执行情况。
Orderer->Raft
Orderer是怎么把消息发给Raft的呢?Fabric剥离了底层共识算法与Orderer的耦合,让替换成为可能。看过之前kafka和solo的对这个应该很熟悉。
type Consenter interface {
// Order accepts a message or returns an error indicating the cause of failure
// It ultimately passes through to the consensus.Chain interface
Order(env *cb.Envelope, configSeq uint64) error
// Configure accepts a reconfiguration or returns an error indicating the cause of failure
// It ultimately passes through to the consensus.Chain interface
Configure(config *cb.Envelope, configSeq uint64) error
// WaitReady blocks waiting for consenter to be ready for accepting new messages.
// This is useful when consenter needs to temporarily block ingress messages so
// that in-flight messages can be consumed. It could return error if consenter is
// in erroneous states. If this blocking behavior is not desired, consenter could
// simply return nil.
WaitReady() error
}
只要是普通类型的事件都会走Order,来push到后端的共识服务。
func (c *Chain) Order(env *common.Envelope, configSeq uint64) error {
return c.Submit(&orderer.SubmitRequest{LastValidationSeq: configSeq, Payload: env, Channel: c.channelID}, 0)
}
这里封装成SubmitRequest继续往后传递
func (c *Chain) Submit(req *orderer.SubmitRequest, sender uint64) error {
if err := c.isRunning(); err != nil {
c.Metrics.ProposalFailures.Add(1)
return err
}
leadC := make(chan uint64, 1)
select {
case c.submitC <- &submit{req, leadC}:
lead := <-leadC
if lead == raft.None {
c.Metrics.ProposalFailures.Add(1)
return errors.Errorf("no Raft leader")
}
if lead != c.raftID {
if err := c.rpc.SendSubmit(lead, req); err != nil {
c.Metrics.ProposalFailures.Add(1)
return err
}
}
case <-c.doneC:
c.Metrics.ProposalFailures.Add(1)
return errors.Errorf("chain is stopped")
}
return nil
}
当然chain要是running状态,将收到的事件通知给submitC通道。
等待leadC的通知,先中断下,看下要干嘛,其实就是返回当前任期的leader,当前任期不准确,应该是最新一任leader,因为有可能在某个任期leader没有选出来,当然这个几率非常非常低,因为有随机超时的存在。
继续,拿到任命书,看下如果是raft.None, 说明现在还没有领导,直接return,表示这个事件我不能收,收下真的处理不了。
如果leader不是本人,那问题大了,在Raft的世界里只有leader才能发号施令,现在这个事件怎么办?丢掉又可惜,因为如果都发给leader,那那边压力太大了。既然你没有篡位之意,那努力给你的领导分忧不是,借助rpc将这个事件发给他好了。RPC模块是给orderer间通讯用的,也就是Raftnode间通讯用的。没它整个体系你玩不转的,以后有机会再讲把。
前面Raft->Orderer章节,我们讲了用submitC来通知开门迎客,下面我们看下接客会做些什么?
submitC
case s := <-submitC:
if s == nil {
// polled by `WaitReady`
continue
}
if soft.RaftState == raft.StatePreCandidate || soft.RaftState == raft.StateCandidate {
s.leader <- raft.None
continue
}
s.leader <- soft.Lead
if soft.Lead != c.raftID {
continue
}
batches, pending, err := c.ordered(s.req)
if err != nil {
c.logger.Errorf("Failed to order message: %s", err)
}
if pending {
start() // no-op if timer is already started
} else {
stop()
}
c.propose(propC, bc, batches...)
if c.configInflight {
c.logger.Info("Received config block, pause accepting transaction till it is committed")
submitC = nil
} else if c.blockInflight >= c.opts.MaxInflightMsgs {
c.logger.Debugf("Number of in-flight blocks (%d) reaches limit (%d), pause accepting transaction",
c.blockInflight, c.opts.MaxInflightMsgs)
submitC = nil
}
- 如果当前节点的状态是准候选人或候选人,那就没什么好说了,leader现在还没有产生
- 如果soft.Lead != c.raftID,说明什么,说明最新任期不是自己哦,没有propose的权利,丢弃这次请求。
- batches, pending, err := c.ordered(s.req),很熟悉了,这里负责出包。
- 如果还有剩下的事件没有出包,为了保证不浪费,启动计时器,来做补偿,这部分后面再讲。
- c.propose(propC, bc, batches...),重点,这里是真正给Raft发状态的地方,后面讲到。
- 最后无非就是一些异常情况,会让leader失去接受请求的能力。
func (c *Chain) propose(ch chan<- *common.Block, bc *blockCreator, batches ...[]*common.Envelope) {
for _, batch := range batches {
b := bc.createNextBlock(batch)
c.logger.Debugf("Created block %d, there are %d blocks in flight", b.Header.Number, c.blockInflight)
select {
case ch <- b:
default:
c.logger.Panic("Programming error: limit of in-flight blocks does not properly take effect or block is proposed by follower")
}
// if it is config block, then we should wait for the commit of the block
if utils.IsConfigBlock(b) {
c.configInflight = true
}
c.blockInflight++
}
return
}
还记不记得前面讲becomeLeader的时候提到的ch,这里最后会一个接一个的将block通知到ch。再贴一遍那边的代码。
go func(ctx context.Context, ch <-chan *common.Block) {
for {
select {
case b := <-ch:
data := utils.MarshalOrPanic(b)
if err := c.Node.Propose(ctx, data); err != nil {
c.logger.Errorf("Failed to propose block %d to raft and discard %d blocks in queue: %s", b.Header.Number, len(ch), err)
return
}
c.logger.Debugf("Proposed block %d to raft consensus", b.Header.Number)
case <-ctx.Done():
c.logger.Debugf("Quit proposing blocks, discarded %d blocks in the queue", len(ch))
return
}
}
}(ctx, ch)
最终会调用c.Node.Propose(ctx, data)的方法。
Propose的意思就是将日志广播出去,要群众都尽量保存起来,但还没有提交,等到leader收到半数以上的群众都响应说已经保存完了,leader这时就可以提交了,下一次Ready的时候就会带上committedindex。
超时处理
case <-timer.C():
ticking = false
batch := c.support.BlockCutter().Cut()
if len(batch) == 0 {
c.logger.Warningf("Batch timer expired with no pending requests, this might indicate a bug")
continue
}
c.logger.Debugf("Batch timer expired, creating block")
c.propose(propC, bc, batch) // we are certain this is normal block, no need to block
没有新意,无非就是将pending的做一次Cut,然后propose到Raft。
配置更新
配置部分是Raft不可忽略的一部分,Fabric是怎样将成员的变更传递给Raft的?
首先我们回到Node接口,看下ProposeConfChange和ApplyConfChange。
一个是通知Raft,有配置变更。另外一个是接到Raft通知,有配置更新,立即执行。
ProposeConfChange
func (c *Chain) writeBlock(block *common.Block, index uint64) {
...
if utils.IsConfigBlock(block) {
c.writeConfigBlock(block, index)
return
}
...
}
还记得么,前面提到的writeBlock里面会判断当前写入的是不是configblock
func (c *Chain) writeConfigBlock(block *common.Block, index uint64) {
metadata, raftMetadata := c.newRaftMetadata(block)
var changes *MembershipChanges
if metadata != nil {
changes = ComputeMembershipChanges(raftMetadata.Consenters, metadata.Consenters)
}
confChange := changes.UpdateRaftMetadataAndConfChange(raftMetadata)
raftMetadata.RaftIndex = index
raftMetadataBytes := utils.MarshalOrPanic(raftMetadata)
// write block with metadata
c.support.WriteConfigBlock(block, raftMetadataBytes)
c.configInflight = false
// update membership
if confChange != nil {
// We need to propose conf change in a go routine, because it may be blocked if raft node
// becomes leaderless, and we should not block `serveRequest` so it can keep consuming applyC,
// otherwise we have a deadlock.
go func() {
// ProposeConfChange returns error only if node being stopped.
// This proposal is dropped by followers because DisableProposalForwarding is enabled.
if err := c.Node.ProposeConfChange(context.TODO(), *confChange); err != nil {
c.logger.Warnf("Failed to propose configuration update to Raft node: %s", err)
}
}()
c.confChangeInProgress = confChange
switch confChange.Type {
case raftpb.ConfChangeAddNode:
c.logger.Infof("Config block just committed adds node %d, pause accepting transactions till config change is applied", confChange.NodeID)
case raftpb.ConfChangeRemoveNode:
c.logger.Infof("Config block just committed removes node %d, pause accepting transactions till config change is applied", confChange.NodeID)
default:
c.logger.Panic("Programming error, encountered unsupported raft config change")
}
c.configInflight = true
}
c.raftMetadataLock.Lock()
c.opts.RaftMetadata = raftMetadata
c.raftMetadataLock.Unlock()
}
第一眼就可以得出一个结论,在Fabric的世界里,Raft的配置更新是包括在ConfigBlock里面的,只不过在block写入账本之前会从里面剥离出来涉及到Raft的配置变更的部分,然后去通知Raft。
- 去ConfigBlock里面拿到EtcdRaft部分的配置,以及当前在用的配置
- 做比对,得出一份报告,这次新增了哪几个节点,要删除哪几个几点
- 得出报告还不行,还得结合Raft的规定,出局一份书面的申请。UpdateRaftMetadataAndConfChange就是干这个的。
func (mc *MembershipChanges) UpdateRaftMetadataAndConfChange(raftMetadata *etcdraft.RaftMetadata) *raftpb.ConfChange {
if mc == nil || mc.TotalChanges == 0 {
return nil
}
var confChange *raftpb.ConfChange
// producing corresponding raft configuration changes
if len(mc.AddedNodes) > 0 {
nodeID := raftMetadata.NextConsenterId
raftMetadata.Consenters[nodeID] = mc.AddedNodes[0]
raftMetadata.NextConsenterId++
confChange = &raftpb.ConfChange{
ID: raftMetadata.ConfChangeCounts,
NodeID: nodeID,
Type: raftpb.ConfChangeAddNode,
}
raftMetadata.ConfChangeCounts++
return confChange
}
if len(mc.RemovedNodes) > 0 {
for _, c := range mc.RemovedNodes {
for nodeID, node := range raftMetadata.Consenters {
if bytes.Equal(c.ClientTlsCert, node.ClientTlsCert) {
delete(raftMetadata.Consenters, nodeID)
confChange = &raftpb.ConfChange{
ID: raftMetadata.ConfChangeCounts,
NodeID: nodeID,
Type: raftpb.ConfChangeRemoveNode,
}
raftMetadata.ConfChangeCounts++
break
}
}
}
}
return confChange
}
有没有发现,这里执行下来每次只会更新一个节点,意味着每次更新Raft成员信息的时候,每次只能新增或删除一个节点,否则剩下的是不会生效的。这里感兴趣的可以参考Raft论文,每次只变更一个节点,是性价比高的实现。
if len(confState.Nodes) == len(c.opts.RaftMetadata.Consenters) { // since configuration change could only add one node or // remove one node at a time, if raft nodes state size // equal to membership stored in block metadata field, // that means everything is in sync and no need to propose // update return nil }
写入ConfigBlock到本地账本
c.Node.ProposeConfChange,这里就是通知Raft做配置更新了。
设置configInflight=true,表示现在有个配置更新已经提案给Raft了,等通知。
记录本次更新到confChangeInProgress用来之后的跟踪进度
ApplyConfChange
回忆下,当我们的提案发到Raft后,我怎么知道成员都达成一致准备开干呢?当然是等待Ready的CommittedEntries啦,最终会通知applyc通道。
case raftpb.EntryConfChange:
var cc raftpb.ConfChange
if err := cc.Unmarshal(ents[i].Data); err != nil {
c.logger.Warnf("Failed to unmarshal ConfChange data: %s", err)
continue
}
c.confState = *c.Node.ApplyConfChange(cc)
switch cc.Type {
case raftpb.ConfChangeAddNode:
c.logger.Infof("Applied config change to add node %d, current nodes in channel: %+v", cc.NodeID, c.confState.Nodes)
case raftpb.ConfChangeRemoveNode:
c.logger.Infof("Applied config change to remove node %d, current nodes in channel: %+v", cc.NodeID, c.confState.Nodes)
default:
c.logger.Panic("Programming error, encountered unsupported raft config change")
}
// This ConfChange was introduced by a previously committed config block,
// we can now unblock submitC to accept envelopes.
if c.confChangeInProgress != nil &&
c.confChangeInProgress.NodeID == cc.NodeID &&
c.confChangeInProgress.Type == cc.Type {
if err := c.configureComm(); err != nil {
c.logger.Panicf("Failed to configure communication: %s", err)
}
c.confChangeInProgress = nil
c.configInflight = false
// report the new cluster size
c.Metrics.ClusterSize.Set(float64(len(c.opts.RaftMetadata.Consenters)))
}
if cc.Type == raftpb.ConfChangeRemoveNode && cc.NodeID == c.raftID {
c.logger.Infof("Current node removed from replica set for channel %s", c.channelID)
// calling goroutine, since otherwise it will be blocked
// trying to write into haltC
go c.Halt()
}
}
- c.Node.ApplyConfChange(cc),总算是看到了,这里就是执行配置更新了。
- 还记得上面会去记录confChangeInProgress么?如果相等说明之前给Raft的提案,终于收到了响应,大家都准备好了,开始吧。
- c.configureComm()会在cluster章节讲解,这里简单的说就是按照最新的成员,构建Raft网络。
- 释放configInflight和confChangeInProgress,代表本次配置更新完毕。
- 如果接收到的是删除节点的通知,看下是不是本人,如果是,调用Halt,想也知道,最终会去调Node的Stop,停掉该Raft节点。
最后
关于通讯层也是很重要的部分,这里不光是托管Raft的消息传递,也是支撑Orderer cluster的关键,下次单独拿来讲吧。
etcdraft的部分差不多就是这样了,当然了,有很多细节没有涉及,比如config的部分。
网友评论