转载
关于两类分类问题,原始类为positive、negative,分类后的类别为p'、n'。排列组合后得到4种结果,如下图所示:
于是我们得到四个指标,分别为:真阳、伪阳、伪阴、真阴。ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。这两个值由上面四个值计算得到,公式如下:
TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。TPR=TP/(TP+FN)
FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。FPR=FP/(FP+TN)
放在具体领域来理解上述两个指标。如在医学诊断中,判断有病的样本。那么尽量把有病的揪出来是主要任务,也就是第一个指标TPR,要越高越好。而把没病的样本误诊为有病的,也就是第二个指标FPR,要越低越好。不难发现,这两个指标之间是相互制约的。如果某个医生对于有病的症状比较敏感,稍微的小症状都判断为有病,那么他的第一个指标应该会很高,但是第二个指标也就相应地变高。最极端的情况下,他把所有的样本都看做有病,那么第一个指标达到1,第二个指标也为1。
2.3ROC的图形化表示
我们以FPR为横轴,TPR为纵轴,得到如下ROC空间:
image.png
我们可以看出:左上角的点(TPR=1,FPR=0),为完美分类,也就是这个医生医术高明,诊断全对;点A(TPR>FPR),医生A的判断大体是正确的。中线上的点B(TPR=FPR),也就是医生B全都是蒙的,蒙对一半,蒙错一半;下半平面的点C(TPR<FPR),这个医生说你有病,那么你很可能没有病,医生C的话我们要反着听,为真庸医。
上图中一个阈值,得到一个点。现在我们需要一个独立于阈值的评价指标来衡量这个医生的医术如何,也就是遍历所有的阈值,得到ROC曲线。还是一开始的那幅图,假设如下就是某个医生的诊断统计图,直线代表阈值。我们遍历所有的阈值,能够在ROC平面上得到如下的ROC曲线。
image
曲线距离左上角越近,证明分类器效果越好。
image
如上,是三条ROC曲线,在0.23处取一条直线。那么,在同样的FPR=0.23的情况下,红色分类器得到更高的TPR。也就表明,ROC越往上,分类器效果越好。我们用一个标量值AUC来量化他。
网友评论