美文网首页ElasticSearch 运维
6、Rally Summary Report 解读

6、Rally Summary Report 解读

作者: MasonChan | 来源:发表于2019-12-10 18:12 被阅读0次

    参考:https://esrally.readthedocs.io/en/latest/summary_report.html

    1、summary report

    rally 只有 summary report,如果想要实时查看各指标数据,需要自己实现,或者使用现成的工具。

    例子:geopoint in-memory 类型的 report,打印到标准输出。report 里面的指标很多,按照不同的 operations 场景,我们可以将其划分为几个部分,如下所示:

    |   Lap |                                                         Metric |          Task |       Value |   Unit |
    |------:|---------------------------------------------------------------:|--------------:|------------:|-------:|
    |   All |                     Cumulative indexing time of primary shards |               |     34.2505 |    min |
    |   All |             Min cumulative indexing time across primary shards |               |     6.63023 |    min |
    |   All |          Median cumulative indexing time across primary shards |               |     6.83152 |    min |
    |   All |             Max cumulative indexing time across primary shards |               |     7.12722 |    min |
    
    |   All |            Cumulative indexing throttle time of primary shards |               |           0 |    min |
    |   All |    Min cumulative indexing throttle time across primary shards |               |           0 |    min |
    |   All | Median cumulative indexing throttle time across primary shards |               |           0 |    min |
    |   All |    Max cumulative indexing throttle time across primary shards |               |           0 |    min |
    
    |   All |                        Cumulative merge time of primary shards |               |     25.9476 |    min |
    |   All |                       Cumulative merge count of primary shards |               |         416 |        |
    |   All |                Min cumulative merge time across primary shards |               |     4.70943 |    min |
    |   All |             Median cumulative merge time across primary shards |               |     5.15057 |    min |
    |   All |                Max cumulative merge time across primary shards |               |     5.81993 |    min |
    |   All |               Cumulative merge throttle time of primary shards |               |     4.27752 |    min |
    |   All |       Min cumulative merge throttle time across primary shards |               |    0.720717 |    min |
    |   All |    Median cumulative merge throttle time across primary shards |               |    0.808833 |    min |
    |   All |       Max cumulative merge throttle time across primary shards |               |     1.03858 |    min |
    
    |   All |                      Cumulative refresh time of primary shards |               |     6.58592 |    min |
    |   All |                     Cumulative refresh count of primary shards |               |        2428 |        |
    |   All |              Min cumulative refresh time across primary shards |               |       1.252 |    min |
    |   All |           Median cumulative refresh time across primary shards |               |      1.3497 |    min |
    |   All |              Max cumulative refresh time across primary shards |               |     1.35478 |    min |
    |   All |                        Cumulative flush time of primary shards |               |      0.1466 |    min |
    |   All |                       Cumulative flush count of primary shards |               |          15 |        |
    |   All |                Min cumulative flush time across primary shards |               |   0.0212833 |    min |
    |   All |             Median cumulative flush time across primary shards |               |   0.0315167 |    min |
    |   All |                Max cumulative flush time across primary shards |               |   0.0388833 |    min |
    
    |   All |                                               Median CPU usage |               |       300.5 |      % |
    
    |   All |                                             Total Young Gen GC |               |     105.401 |      s |
    |   All |                                               Total Old Gen GC |               |      10.115 |      s |
    
    |   All |                                                     Store size |               |     2.97451 |     GB |
    |   All |                                                  Translog size |               | 2.00234e-07 |     GB |
    |   All |                                                     Index size |               |     2.97451 |     GB |
    |   All |                                                  Total written |               |      29.766 |     GB |
    
    |   All |                                         Heap used for segments |               |     13.3071 |     MB |
    |   All |                                       Heap used for doc values |               |  0.00948334 |     MB |
    |   All |                                            Heap used for terms |               |     11.2716 |     MB |
    |   All |                                            Heap used for norms |               |           0 |     MB |
    |   All |                                           Heap used for points |               |    0.582964 |     MB |
    |   All |                                    Heap used for stored fields |               |     1.44304 |     MB |
    
    |   All |                                                  Segment count |               |          96 |        |
    
    |   All |                                                 Min Throughput |  index-append |     68976.4 | docs/s |
    |   All |                                              Median Throughput |  index-append |     72087.8 | docs/s |
    |   All |                                                 Max Throughput |  index-append |     75291.9 | docs/s |
    |   All |                                        50th percentile latency |  index-append |     528.702 |     ms |
    |   All |                                        90th percentile latency |  index-append |     782.233 |     ms |
    |   All |                                        99th percentile latency |  index-append |     1167.04 |     ms |
    |   All |                                      99.9th percentile latency |  index-append |     1962.36 |     ms |
    |   All |                                     99.99th percentile latency |  index-append |     2501.22 |     ms |
    |   All |                                       100th percentile latency |  index-append |      2634.9 |     ms |
    |   All |                                   50th percentile service time |  index-append |     528.702 |     ms |
    |   All |                                   90th percentile service time |  index-append |     782.233 |     ms |
    |   All |                                   99th percentile service time |  index-append |     1167.04 |     ms |
    |   All |                                 99.9th percentile service time |  index-append |     1962.36 |     ms |
    |   All |                                99.99th percentile service time |  index-append |     2501.22 |     ms |
    |   All |                                  100th percentile service time |  index-append |      2634.9 |     ms |
    |   All |                                                     error rate |  index-append |           0 |      % |
    
    |   All |                                                 Min Throughput |       polygon |        2.01 |  ops/s |
    |   All |                                              Median Throughput |       polygon |        2.01 |  ops/s |
    |   All |                                                 Max Throughput |       polygon |        2.01 |  ops/s |
    |   All |                                        50th percentile latency |       polygon |     93.6485 |     ms |
    |   All |                                        90th percentile latency |       polygon |     99.4864 |     ms |
    |   All |                                        99th percentile latency |       polygon |     109.385 |     ms |
    |   All |                                       100th percentile latency |       polygon |     110.976 |     ms |
    |   All |                                   50th percentile service time |       polygon |        93.2 |     ms |
    |   All |                                   90th percentile service time |       polygon |      99.042 |     ms |
    |   All |                                   99th percentile service time |       polygon |     108.945 |     ms |
    |   All |                                  100th percentile service time |       polygon |     110.524 |     ms |
    |   All |                                                     error rate |       polygon |           0 |      % |
    
    |   All |                                                 Min Throughput |          bbox |        2.01 |  ops/s |
    |   All |                                              Median Throughput |          bbox |        2.01 |  ops/s |
    |   All |                                                 Max Throughput |          bbox |        2.01 |  ops/s |
    |   All |                                        50th percentile latency |          bbox |     98.1866 |     ms |
    |   All |                                        90th percentile latency |          bbox |     103.392 |     ms |
    |   All |                                        99th percentile latency |          bbox |     119.742 |     ms |
    |   All |                                       100th percentile latency |          bbox |     122.896 |     ms |
    |   All |                                   50th percentile service time |          bbox |     97.7447 |     ms |
    |   All |                                   90th percentile service time |          bbox |     102.939 |     ms |
    |   All |                                   99th percentile service time |          bbox |     119.302 |     ms |
    |   All |                                  100th percentile service time |          bbox |      122.41 |     ms |
    |   All |                                                     error rate |          bbox |           0 |      % |
    
    |   All |                                                 Min Throughput |      distance |        5.02 |  ops/s |
    |   All |                                              Median Throughput |      distance |        5.02 |  ops/s |
    |   All |                                                 Max Throughput |      distance |        5.02 |  ops/s |
    |   All |                                        50th percentile latency |      distance |     18.3639 |     ms |
    |   All |                                        90th percentile latency |      distance |     19.5332 |     ms |
    |   All |                                        99th percentile latency |      distance |     23.3447 |     ms |
    |   All |                                       100th percentile latency |      distance |     24.0361 |     ms |
    |   All |                                   50th percentile service time |      distance |     18.1461 |     ms |
    |   All |                                   90th percentile service time |      distance |     19.2916 |     ms |
    |   All |                                   99th percentile service time |      distance |     23.1039 |     ms |
    |   All |                                  100th percentile service time |      distance |     23.8031 |     ms |
    |   All |                                                     error rate |      distance |           0 |      % |
    
    |   All |                                                 Min Throughput | distanceRange |        0.42 |  ops/s |
    |   All |                                              Median Throughput | distanceRange |        0.42 |  ops/s |
    |   All |                                                 Max Throughput | distanceRange |        0.42 |  ops/s |
    |   All |                                        50th percentile latency | distanceRange |      181642 |     ms |
    |   All |                                        90th percentile latency | distanceRange |      208871 |     ms |
    |   All |                                        99th percentile latency | distanceRange |      215444 |     ms |
    |   All |                                       100th percentile latency | distanceRange |      216281 |     ms |
    |   All |                                   50th percentile service time | distanceRange |     2347.54 |     ms |
    |   All |                                   90th percentile service time | distanceRange |     2523.76 |     ms |
    |   All |                                   99th percentile service time | distanceRange |     2631.35 |     ms |
    |   All |                                  100th percentile service time | distanceRange |     2635.94 |     ms |
    |   All |                                                     error rate | distanceRange |           0 |      % |
    
    ----------------------------------
    [INFO] SUCCESS (took 2022 seconds)
    ----------------------------------
    
    

    指标主要分为 2 大部分:

    • index report
    • operations report

    为了方便举例,这里先预设环境变量:

    host=172.17.0.2
    index=customer
    
    

    Cumulative indexing time of primary shards【重要】

    所有 primary shards 的 indexing 累积时间总和。数据来自 indices stats API,这个 API 只有索引级别的 indexing time:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.indexing.index_time_in_millis

    Metric: indexing_total_time

    需要注意的是,这个不是自然时间,而是多个 indexing 线程消耗 CPU 时间的总和。例如有 M 个 indexing 线程,跑了 N 分钟,那么此指标的总时间就是:M*N 分钟,而不是 N 分钟。

    Cumulative indexing time across primary shards

    单个 primary shard 的 indexing 累积时间总和的最小值、平均值、最大值。数据来自 indices stats API:

    curl -X GET "{ip}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Cumulative indexing throttle time of primary shards

    所有 primary shards indexing 时被限流的累积时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.indexing.throttle_time_in_millis

    这个也不是自然时间,而是 indexing 时,索引被限流时 indexing 线程消耗的 CPU 时间总和。

    Cumulative indexing throttle time across primary shards

    单个 primary shards indexing 时被限流的累积时间总和的最小值、平均值、最大值。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Cumulative merge time of primary shards【重要】

    merge primary shards 的时间总和,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.merges.total_time_in_millis

    Metric: merges_total_time

    Cumulative merge count of primary shards【重要】

    发生 merge 动作的 primary shards 数量,不是所有的 shards 都会有 merge 动作的。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.merges.total

    Cumulative merge time across primary shards

    单个 primary shards merge 累积时间总和的最小值、平均值、最大值。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Cumulative refresh time of primary shards【重要】

    所有 primary shards refresh 的时间总和,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.refresh.total_time_in_millis

    Cumulative refresh count of primary shards【重要】

    所有 primary shards refresh 的次数总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.refresh.total

    Cumulative refresh time across primary shards

    单个 primary shard refresh 的时间总和的最小值、平均值、最大值。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Cumulative flush time of primary shards【重要】

    所有 primary shards 把缓存的事务刷到磁盘的时间总和,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.flush.total_time_in_millis

    Cumulative flush count of primary shards

    所有 primary shards flush 的次数总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.flush.total

    Cumulative flush time across primary shards

    单个 primary shard flush 时间总和的最小值、平均值、最大值,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Cumulative merge throttle time of primary shards

    所有 primary shards merge 的时间,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&pretty" | jq .indices.${index}.primaries.merges.total_throttled_time_in_millis

    Cumulative merge throttle time across primary shards

    单个 primary shards merge 的时间最小值、平均值、最大值,也是指线程消耗 CPU 的时间总和。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&pretty" | jq .indices.${index}.shards

    Merge time (X)

    merge 的对象有很多种,X 指的是下面某个对象:

    • postings
    • stored fields
    • doc values
    • norms
    • vectors
    • points

    Lucene 会汇报不同 merge 动作所需的时间,通过日志方式进行跟踪。用 --car-params="verbose_iw_logging_enabled:true" 可以启动这个日志跟踪,对应的配置文件是这个:

    ~/.rally/benchmarks/teams/default/cars/v1/vanilla/templates/config/log4j2.properties

    ML processing time

    字面意思是:机器学习的处理时间。这里指机器学习的 job 在处理单个 bucket 的所花费的时间。包括:

    • 最小值
    • 平均值
    • 中间值
    • 最大值

    metrics key: ml_processing_time

    Total Young Gen GC【重要】

    集群所有节点的 YGC 时间。数据来自 node stats API

    curl -s "http://${host}:9200/_nodes/stats?level=node&metric=jvm&pretty" | jq .nodes

    metrics key: node_total_young_gen_gc_time

    Total Old Gen GC【重要】

    集群所有节点的 OGC 时间。数据来自 node stats API

    curl -s "http://${host}:9200/_nodes/stats?level=node&metric=jvm&pretty" | jq .nodes

    metrics key: node_total_old_gen_gc_time

    Index size【一般】

    指的是 bentchmark 结束后,所有节点的索引大小。Index size = Store size + Translog size,不包括副本分片。

    metrics key: final_index_size_bytes

    Store size

    索引文件的大小,单位 bytes。不包括 translog,不包括副本分片。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&metric=store" | jq .indices.${index}.primaries.store.size_in_bytes

    metrics key: store_size_in_bytes

    Translog size

    事务日志文件大小,单位 bytes。数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=indices&metric=translog" | jq .indices.${index}.primaries.translog.size_in_bytes

    metrics key: translog_size_in_bytes

    Total written

    benchmark 期间写到磁盘的数据大小:

    • 在 Linux 平台,只汇报 ES 的写入数据
    • 在 Mac OS X,汇报所有进程的写入数据

    metrics key: disk_io_write_bytes

    Heap used for X

    所有 primary shard 的 heap 使用报告,包含以下几项,单位 bytes:

    • doc values
    • terms
    • norms
    • points
    • stored fields

    数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&metric=segments&pretty" | jq .indices.${index}.primaries.segments

    metrics keys: segments_*_in_bytes

    Segment count【一般】

    所有 primary shard 的 segments 数,数据来自 indices stats API:

    curl -s "[http://](http://%24/){host}:9200/{index}/_stats?level=shards&metric=segments&pretty" | jq .indices.${index}.primaries.segments.count

    metrics key: segments_count

    Throughput【重点】

    每个 operation 的吞吐量,即 qps,汇报形式为:最小值、中间值、最大值。

    Rally reports the minimum, median and maximum throughput for each task.

    metrics key: throughput

    Latency【重点】

    请求生命周期分为以下几个阶段:

    1. 客户端向 ES 提交请求
    2. 等待 ES 处理请求
    3. ES 开始接受并开始处理请求
    4. ES 处理正在处理请求
    5. ES 开始返回请求的结果给客户端
    6. ES 返回结果完毕

    latency 指的是以上所有阶段所经历的时间(提交一个请求到完全接收返回所经历的时间),单位 ms。

    每个 operation 都会汇报以下几种情况的响应延时:

    • 50%
    • 90%
    • 99%
    • 99.9%
    • 99.99%
    • 100%

    以上各种情况的请求数 > 5 才汇报,不然没意义

    metrics key: latency

    Service time

    指的是 ES 开始处理一个请求和返回结果所经历的总时间。在请求生命周期中,只包含 3-6 折几个阶段。

    如果分不清 latency 和 service time,很容易就将它们混淆了。一般来说,我们都是使用 latency,很少使用 service time。

    和 latency 一样,service time 也是分为 6 种情况进行汇报。

    metrics key: service_time

    Error rate【重要】

    每个 operation 的请求错误率,单位 % 。

    任何的请求异常都会被当成错误的返回,包括 HTTP 4xx 5xx、网络错误 等。如果 error rate > 0 ,那么就要查看日志,是什么原因导致请求异常。

    每个 service_time 记录都会有一个 meta.success 来标记这个请求是否成功,rally 通过这个来统计请求的错误率。

    metrics key: service_time

    2、本地文件 reports

    另外,这些指标报告是保存在本地的,我们可以用来自己做一个报告。

    例子:

    ~/.rally/benchmarks/races/2019-07-10-11-42-55/race.json

    {
     "trial-id": "1329796e-c61a-40e2-b5c2-56e915e9d123",
     "results": {
      "indexing_throttle_time_per_shard": {
       "max": 0,
       "unit": "ms",
       "min": 0,
       "median": 0
      },
      "merge_part_time_stored_fields": null,
      "merge_part_time_postings": null,
      "merge_part_time_points": null,
      "old_gc_time": 10115,
      "merge_throttle_time_per_shard": {
       "max": 62315,
       "unit": "ms",
       "min": 43243,
       "median": 48530
      },
      "segment_count": 96,
      "indexing_throttle_time": 0,
      "flush_count": 15,
      "young_gc_time": 105401,
      "refresh_count": 2428,
      "merge_time_per_shard": {
       "max": 349196,
       "unit": "ms",
       "min": 282566,
       "median": 309034
      },
      "total_time_per_shard": {
       "max": 427633,
       "unit": "ms",
       "min": 397814,
       "median": 409891
      },
      "store_size": 3193856176,
      "median_cpu_usage": 300.5,
      "merge_part_time_doc_values": null,
      "op_metrics": [
       {
        "throughput": {
         "mean": 72469.83788189304,
         "max": 75291.84695429394,
         "unit": "docs/s",
         "min": 68976.42460010575,
         "median": 72087.81317903922
        },
        "operation": "index-append",
        "latency": {
         "50_0": 528.701514005661,
         "90_0": 782.2325207293034,
         "99_0": 1167.0357184298318,
         "99_9": 1962.3588057384227,
         "99_99": 2501.217666936475,
         "100_0": 2634.900774806738,
         "mean": 564.4015841809908
        },
        "error_rate": 0.0,
        "task": "index-append",
        "service_time": {
         "50_0": 528.701514005661,
         "90_0": 782.2325207293034,
         "99_0": 1167.0357184298318,
         "99_9": 1962.3588057384227,
         "99_99": 2501.217666936475,
         "100_0": 2634.900774806738,
         "mean": 564.4015841809908
        }
       },
       {
        "throughput": {
         "mean": 2.0066067405365007,
         "max": 2.008148376258046,
         "unit": "ops/s",
         "min": 2.0054495592111383,
         "median": 2.0065018842024935
        },
        "operation": "polygon",
        "latency": {
         "50_0": 93.64854823797941,
         "90_0": 99.48644153773786,
         "99_0": 109.38462147489192,
         "100_0": 110.97554676234722,
         "mean": 94.74336672574282
        },
        "error_rate": 0.0,
        "task": "polygon",
        "service_time": {
         "50_0": 93.20002049207687,
         "90_0": 99.04197864234449,
         "99_0": 108.94488280639054,
         "100_0": 110.5240248143673,
         "mean": 94.30186055600643
        }
       },
       {
        "throughput": {
         "mean": 2.0065356066431304,
         "max": 2.008013747372341,
         "unit": "ops/s",
         "min": 2.0053142795678984,
         "median": 2.006503138210337
        },
        "operation": "bbox",
        "latency": {
         "50_0": 98.18658325821161,
         "90_0": 103.39184030890465,
         "99_0": 119.74237725138666,
         "100_0": 122.89570085704327,
         "mean": 98.93894387409091
        },
        "error_rate": 0.0,
        "task": "bbox",
        "service_time": {
         "50_0": 97.74468280375004,
         "90_0": 102.93922554701567,
         "99_0": 119.30210115388037,
         "100_0": 122.40998260676861,
         "mean": 98.49681122228503
        }
       },
       {
        "throughput": {
         "mean": 5.018613647231882,
         "max": 5.022730414910589,
         "unit": "ops/s",
         "min": 5.01536813892288,
         "median": 5.018371813955537
        },
        "operation": "distance",
        "latency": {
         "50_0": 18.363934941589832,
         "90_0": 19.53315138816834,
         "99_0": 23.344674017280344,
         "100_0": 24.036075919866562,
         "mean": 18.68119029328227
        },
        "error_rate": 0.0,
        "task": "distance",
        "service_time": {
         "50_0": 18.14611628651619,
         "90_0": 19.29163541644812,
         "99_0": 23.10389801859856,
         "100_0": 23.803113028407097,
         "mean": 18.451415169984102
        }
       },
       {
        "throughput": {
         "mean": 0.4193458177488859,
         "max": 0.42008646673051614,
         "unit": "ops/s",
         "min": 0.4184097157477222,
         "median": 0.41945384373297073
        },
        "operation": "distanceRange",
        "latency": {
         "50_0": 181642.2101240605,
         "90_0": 208871.21991384774,
         "99_0": 215443.5841869004,
         "100_0": 216281.42643161118,
         "mean": 181446.70384759083
        },
        "error_rate": 0.0,
        "task": "distanceRange",
        "service_time": {
         "50_0": 2347.544995136559,
         "90_0": 2523.755827359855,
         "99_0": 2631.3503402471542,
         "100_0": 2635.939357802272,
         "mean": 2371.6406882554293
        }
       }
      ],
      "memory_segments": 13953522,
      "refresh_time": 395155,
      "memory_stored_fields": 1513136,
      "ml_processing_time": [],
      "merge_part_time_norms": null,
      "flush_time_per_shard": {
       "max": 2333,
       "unit": "ms",
       "min": 1277,
       "median": 1891
      },
      "memory_norms": 0,
      "merge_time": 1556855,
      "memory_terms": 11819160,
      "node_metrics": [
       {
        "startup_time": 8.711096312850714,
        "node": "rally-node-0"
       }
      ],
      "refresh_time_per_shard": {
       "max": 81287,
       "unit": "ms",
       "min": 75120,
       "median": 80982
      },
      "total_time": 2055030,
      "merge_count": 416,
      "translog_size": 215,
      "memory_points": 611282,
      "memory_doc_values": 9944,
      "flush_time": 8796,
      "bytes_written": 31961006080,
      "index_size": 3193858129,
      "merge_part_time_vectors": null,
      "merge_throttle_time": 256651
     },
     "challenge": "append-no-conflicts",
     "trial-timestamp": "20190710T114255Z",
     "pipeline": "from-distribution",
     "user-tags": {},
     "rally-version": "1.1.0",
     "total-laps": 1,
     "car": [
      "defaults"
     ],
     "track": "geopoint",
     "cluster": {
      "distribution-version": "5.5.2",
      "revision": "b2f0c09",
      "nodes": [
       {
        "cpu": {
         "allocated_processors": 4,
         "available_processors": 4
        },
        "host_name": "127.0.0.1",
        "plugins": [],
        "node_name": "rally-node-0",
        "ip": "127.0.0.1",
        "memory": {
         "total_bytes": 4144381952
        },
        "jvm": {
         "version": "1.8.0_102",
         "vendor": "Oracle Corporation"
        },
        "fs": [
         {
          "type": "rootfs",
          "mount": "/ (rootfs)",
          "spins": "unknown"
         }
        ],
        "os": {
         "version": "3.10.0-229.el7.x86_64",
         "name": "Linux"
        }
       }
      ],
      "node-count": 1,
      "distribution-flavor": "oss"
     },
     "environment": "local"
    }
    
    

    3、report templates

    track report 的 templates 信息放在 python esrally module 里面,例如:

    python-3.5.2/lib/python3.5/site-packages/esrally/resources/metrics-template.json

    相关文章

      网友评论

        本文标题:6、Rally Summary Report 解读

        本文链接:https://www.haomeiwen.com/subject/wnbggctx.html