美文网首页
tensorflow深度学习之注意(四)

tensorflow深度学习之注意(四)

作者: baihualinxin | 来源:发表于2018-04-25 15:05 被阅读0次

    import tensorflow as tf

    这个方法就是深度学习的神经网络,代码的核心部分。

    def inference(images, batch_size, n_classes):

        with tf.variable_scope('conv1') as scope:

            weights = tf.get_variable('weights',

                                      shape = [3,3,3, 16],

                                      dtype = tf.float32,

                                      initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))

            biases = tf.get_variable('biases',

                                    shape=[16],

                                    dtype=tf.float32,

                                    initializer=tf.constant_initializer(0.1))

            conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')

            pre_activation = tf.nn.bias_add(conv, biases)

            conv1 = tf.nn.relu(pre_activation, name= scope.name)

        #pool1 and norm1 

        with tf.variable_scope('pooling1_lrn') as scope:

            pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],

                                  padding='SAME', name='pooling1')

            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,

                              beta=0.75,name='norm1')

        #conv2

        with tf.variable_scope('conv2') as scope:

            weights = tf.get_variable('weights',

                                      shape=[3,3,16,16],

                                      dtype=tf.float32,

                                      initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))

            biases = tf.get_variable('biases',

                                    shape=[16],

                                    dtype=tf.float32,

                                    initializer=tf.constant_initializer(0.1))

            conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')

            pre_activation = tf.nn.bias_add(conv, biases)

            conv2 = tf.nn.relu(pre_activation, name='conv2')

        #pool2 and norm2

        with tf.variable_scope('pooling2_lrn') as scope:

            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,

                              beta=0.75,name='norm2')

            pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],

                                  padding='SAME',name='pooling2')

        #local3

        with tf.variable_scope('local3') as scope:

            reshape = tf.reshape(pool2, shape=[batch_size, -1])

            dim = reshape.get_shape()[1].value

            weights = tf.get_variable('weights',

                                      shape=[dim,128],

                                      dtype=tf.float32,

                                      initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))

            biases = tf.get_variable('biases',

                                    shape=[128],

                                    dtype=tf.float32,

                                    initializer=tf.constant_initializer(0.1))

            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)   

        #local4

        with tf.variable_scope('local4') as scope:

            weights = tf.get_variable('weights',

                                      shape=[128,128],

                                      dtype=tf.float32,

                                      initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))

            biases = tf.get_variable('biases',

                                    shape=[128],

                                    dtype=tf.float32,

                                    initializer=tf.constant_initializer(0.1))

            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')

        # softmax

        with tf.variable_scope('softmax_linear') as scope:

            weights = tf.get_variable('softmax_linear',

                                      shape=[128, n_classes],

                                      dtype=tf.float32,

                                      initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))

            biases = tf.get_variable('biases',

                                    shape=[n_classes],

                                    dtype=tf.float32,

                                    initializer=tf.constant_initializer(0.1))

            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')

        return softmax_linear

    #%%

    def losses(logits, labels):

        with tf.variable_scope('loss') as scope:

            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\

                            (logits=logits, labels=labels, name='xentropy_per_example')

            loss = tf.reduce_mean(cross_entropy, name='loss')

            tf.summary.scalar(scope.name+'/loss', loss)

        return loss

    def trainning(loss, learning_rate):

        with tf.name_scope('optimizer'):

            optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)

            global_step = tf.Variable(0, name='global_step', trainable=False)

            train_op = optimizer.minimize(loss, global_step= global_step)

        return train_op

    def evaluation(logits, labels):

      with tf.variable_scope('accuracy') as scope:

          correct = tf.nn.in_top_k(logits, labels, 1)

          correct = tf.cast(correct, tf.float16)

          accuracy = tf.reduce_mean(correct)

          tf.summary.scalar(scope.name+'/accuracy', accuracy)

      return accuracy

    相关文章

      网友评论

          本文标题:tensorflow深度学习之注意(四)

          本文链接:https://www.haomeiwen.com/subject/wncylftx.html