美文网首页Python_数据分析_pandaspython
Pandas实战——数据透视及重构操作

Pandas实战——数据透视及重构操作

作者: 深思海数_willschang | 来源:发表于2021-09-15 10:43 被阅读0次
pandas in action.png

原书地址

本篇笔记为原书第八章节的内容。

  • Reshaping and pivoting

本章开始对比论述了DataFrame数据格式(narrow OR wide)的优劣势,从而引出透视表的优势。


wide format.png
narrow format.png

透视表

  • 读取数据


    read data
  • pivot_table() 对数据进行透视表处理 aggfunc参数(mean,sum,count,max,min,std,median,size)


    pivot_table()
  • 对某列(支持多列)进行透视处理


    对列进行透视处理
  • 指定列标签值及空值填充值


    colums && fill_value
  • 各行各列进行统计总计处理 margins参数

margins 参数
  • 支持多种统计方法同时进行


    多种统计同时进行
  • 对不同列进行不同的统计方法,aggfunc参数用字典对各列进行操作赋值


    image.png
  • index参数支持多值索引


    multi index_col

索引Stackin和Unstacking操作

stack method moves an index level from the column axis to the row axis.

stack.png

unstack method moves the innermost level of the row index to the column index.

unstack

数据融合+透视处理

melt method. (Melting is the process of converting a wide data set to a narrow one.)
id_vars: 标识列
values_vars:哪些列需要melt操作并填写入新的一列

image.png image.png melt && pivot_table

相关文章

网友评论

    本文标题:Pandas实战——数据透视及重构操作

    本文链接:https://www.haomeiwen.com/subject/wnkcgltx.html