美文网首页
JavaSE知识点19java垃圾回收机制详解

JavaSE知识点19java垃圾回收机制详解

作者: paulpaullong | 来源:发表于2017-04-04 21:05 被阅读0次

    1 如何确定某个对象是“垃圾”?

    • 1 既然垃圾收集器的任务是回收垃圾对象所占的空间后,再次供新的对象使用,那么垃圾收集器如何确定某个对象是“垃圾”就是最基本的问题—即通过什么方法判断一个对象可以被回收了。
    • 2 引用计数法:在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了。这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式。
    • 3 可达性分析法:解决这个问题,Java中采取的就是可达性分析法 。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。

    2 典型的垃圾收集算法

    在确定了哪些垃圾可以被回收后,垃圾收集器要做的事情就是开始进行垃圾回收,但是这里面涉及到一个问题是:如何高效地进行垃圾回收?

    • 1 Mark-Sweep(标记-清除)算法
      1)这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。



      2)从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

    • 2 Copying(复制)算法
      1)为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。



      2)这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。
      很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

    • 3 Mark-Compact(标记-整理)算法
      1)为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。


    • 4 Generational Collection(分代收集)算法
      1)分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。
      2)目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。
      3)而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。
      4)对象的内存分配,往大方向上讲就是在堆上分配,对象主要分配在新生代的Eden Space和From Space,少数情况下会直接分配在老年代。如果新生代的Eden Space和From Space的空间不足,则会发起一次GC,如果进行了GC之后,Eden Space和From Space能够容纳该对象就放在Eden Space和From Space。在GC的过程中,会将Eden Space和From Space中的存活对象移动到To Space,然后将Eden Space和From Space进行清理。如果在清理的过程中,To Space无法足够来存储某个对象,就会将该对象移动到老年代中。在进行了GC之后,使用的便是Eden space和To Space了,下次GC时会将存活对象复制到From Space,如此反复循环。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。

    3 典型的垃圾收集器

    垃圾收集算法是 内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,用户可以根据自己的需求组合出各个年代使用的收集器。

    • 1 Serial/Serial Old
      Serial/Serial Old收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。
    • 2 ParNew
      ParNew收集器是Serial收集器的多线程版本,使用多个线程进行垃圾收集。
    • 3 Parallel Scavenge
      Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。
    • 4 Parallel Old
      Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。
    • 5 CMS
      CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。
    • 6 G1
      G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。

    4 垃圾收集器相关的JVM参数设置

    • 1 -XX:+UseSerialGC Jvm运行在Client模式下的默认值,打开此开关后,使用Serial + Serial Old的收集器组合进行内存回收
    • 2 -XX:+UseParNewGC 打开此开关后,使用ParNew + Serial Old的收集器进行垃圾回收
    • 3 -XX:+UseConcMarkSweepGC 使用ParNew + CMS + Serial Old的收集器组合进行内存回收,Serial Old作为CMS出现“Concurrent Mode Failure”失败后的后备收集器使用。
    • 4 -XX:+UseParallelGC Jvm运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge + Serial Old的收集器组合进行回收
    • 5 -XX:+UseParallelOldGC 使用Parallel Scavenge + Parallel Old的收集器组合进行回收
    • 6 -XX:SurvivorRatio 新生代中Eden区域与Survivor区域的容量比值,默认为8,代表Eden:Subrvivor = 8:1
    • 7 -XX:PretenureSizeThreshold 直接晋升到老年代对象的大小,设置这个参数后,大于这个参数的对象将直接在老年代分配
    • 8 -XX:MaxTenuringThreshold 晋升到老年代的对象年龄,每次Minor GC之后,年龄就加1,当超过这个参数的值时进入老年代
    • 9 -XX:UseAdaptiveSizePolicy 动态调整java堆中各个区域的大小以及进入老年代的年龄
    • 10 -XX:+HandlePromotionFailure 是否允许新生代收集担保,进行一次minor gc后, 另一块Survivor空间不足时,将直接会在老年代中保留
    • 11 -XX:ParallelGCThreads 设置并行GC进行内存回收的线程数
    • 12 -XX:GCTimeRatio GC 时间占总时间的比列,默认值为99,即允许1%的GC时间,仅在使用Parallel Scavenge 收集器时有效
    • 13 -XX:MaxGCPauseMillis 设置GC的最大停顿时间,在Parallel Scavenge 收集器下有效
    • 14 -XX:CMSInitiatingOccupancyFraction 设置CMS收集器在老年代空间被使用多少后出发垃圾收集,默认值为68%,仅在CMS收集器时有效,-XX:CMSInitiatingOccupancyFraction=70
    • 15-XX:+UseCMSCompactAtFullCollection 由于CMS收集器会产生碎片,此参数设置在垃圾收集器后是否需要一次内存碎片整理过程,仅在CMS收集器时有效
    • 16 -XX:+CMSFullGCBeforeCompaction 设置CMS收集器在进行若干次垃圾收集后再进行一次内存碎片整理过程,通常与UseCMSCompactAtFullCollection参数一起使用
    • 17 -XX:+UseFastAccessorMethods 原始类型优化
    • 18 -XX:+DisableExplicitGC 是否关闭手动System.gc
    • 19 -XX:+CMSParallelRemarkEnabled 降低标记停顿
    • 20 -XX:LargePageSizeInBytes 内存页的大小不可设置过大,会影响Perm的大小,-XX:LargePageSizeInBytes=128m

    相关文章

      网友评论

          本文标题:JavaSE知识点19java垃圾回收机制详解

          本文链接:https://www.haomeiwen.com/subject/wnyzottx.html