美文网首页
[Causal] Recognizing Causality i

[Causal] Recognizing Causality i

作者: 宇小宸请加油 | 来源:发表于2017-04-23 16:13 被阅读0次

    http://www.aclweb.org/website/old_anthology/W/W14/W14-07.pdf#page=58
    抽取v-np的因果对
    verb-noun phrase

    用了FrameNet里面的数据

    dependency parse

    Purpose, Internal cause, Result, External cause, Cause, Reason, Explanation, Required situation, Purpose of Event, Negative consequences, resulting action, Effect, Cause of shine, Purpose of Goods, Response action, Enabled situation, Grinding cause, Trigger
    有以上label的认为是cause
    其他label是non-cause
    被标注的区间应该没有动词
    一共搞到2158的cause,65777的non-cause

    Supervised learning

    Features:

    • Lexical: verb, lemma of verb, noun phrase, lemma of all words of noun phrase, head noun of noun phrase, lemmas of all words between verb and head noun of noun phrase. 关于单词本身
    • Semantic: 9 noun hierarchies of WordNet(entity, psychological feature, abstraction, state, event, act, group, possession, phenomenon) 关于单词的类别
    • Structural: for a v-np pair the variable sub in np is set to 1 if the subject of v is contained in np, set to 0 if the subject of v is not contained in np and set to -1 if the subject of v is not available in the instance. 关于句子的构成
    loss function

    x1(v-np, l) is the decision vari- able set to 1 only if the label l ∈ L1 is assigned to v-np.
    x1(.)是一个取值为0或1的函数,当v-np的label为l时为1。l可取cause或non-cause
    (2)式规定,对于任意v-np只能取一个标签
    P是概率函数

    Naive Bayes

    后面又添加了关于name entity的东西
    assume if a noun phrase is identified as a named entity then its corresponding verb-noun phrase pair encodes non-cause relation
    这会造成false negative
    然后又定义了几个pattern(by, from, because of, through, for),如果一个noun name entity 和一个verb被这些pattern分割,则不用上面的规则。

    we identify the semantic classes of noun phrases which do not normally represent events, conditions, states, phenomena, processes and thus have high tendency to encode non-cause relations.
    对noun phrase继续加了一个分类器,判断这个noun phrase是不是可能encode causality

    C_np, not C_np

    又加了一些rule
    最后从wiki上找了一些句子,做了pos-tag和dependency parse, 一共1000多个instance来做测试

    相关文章

      网友评论

          本文标题:[Causal] Recognizing Causality i

          本文链接:https://www.haomeiwen.com/subject/wolyzttx.html