在 Label Studio ML Backend 提供的预标注模型示例中,只有 mmdetection 这个 目标检测预标注 示例,而没有 目标分割预标注 示例,因此我参考野生的 目标分割预标注 代码 interactive_segmentation.py 并结合 MMDetection 的 Mask R-CNN 算法,实现了一个 目标分割预标注 的演示代码。
首先下载 Label Studio ML backend 项目代码到本地,并按 目标检测预标注文档 的内容,先实现目标检测预标注。
然后在 label_studio_ml/examples
目录下新创建一个 mask_segmentation
目录,再到 mask_segmentation
目录创建一个新的 mask_segmentation.py
文件:
import os
import logging
import boto3
import cv2
import PIL
import numpy as np
from mmdet.apis import init_detector, inference_detector
from label_studio_ml.model import LabelStudioMLBase
from label_studio_ml.utils import get_image_size, get_single_tag_keys
from label_studio.core.utils.io import json_load, get_data_dir
from label_studio.core.settings.base import DATA_UNDEFINED_NAME
from label_studio_converter.brush import encode_rle
from botocore.exceptions import ClientError
from urllib.parse import urlparse
logger = logging.getLogger(__name__)
class MaskSegmentation(LabelStudioMLBase):
"""基于 https://github.com/open-mmlab/mmdetection 的目标分割器"""
def __init__(self, config_file, checkpoint_file, image_dir=None, labels_file=None, score_threshold=0.5, device='cpu', **kwargs):
"""
将 MMDetection model 模型从配置和检查点加载到内存中.
"""
super(MaskSegmentation, self).__init__(**kwargs)
self.config_file = config_file
self.checkpoint_file = checkpoint_file
self.labels_file = labels_file
# 默认 Label Studio 图片上传文件夹
upload_dir = os.path.join(get_data_dir(), 'media', 'upload')
self.image_dir = image_dir or upload_dir
logger.debug(f'{self.__class__.__name__} 从 {self.image_dir} 读取图像')
if self.labels_file and os.path.exists(self.labels_file):
self.label_map = json_load(self.labels_file)
else:
self.label_map = {}
self.from_name, self.to_name, self.value, self.labels_in_config = get_single_tag_keys(
self.parsed_label_config, 'BrushLabels', 'Image')
schema = list(self.parsed_label_config.values())[0]
self.labels_in_config = set(self.labels_in_config)
# 从 <Label> 标签中的 `predicted_values="airplane,car"` 属性收集标签映射
self.labels_attrs = schema.get('labels_attrs')
if self.labels_attrs:
for label_name, label_attrs in self.labels_attrs.items():
for predicted_value in label_attrs.get('predicted_values', '').split(','):
self.label_map[predicted_value] = label_name
print('从以下位置加载新模型: ', config_file, checkpoint_file)
self.model = init_detector(config_file, checkpoint_file, device=device)
self.score_thresh = score_threshold
def _get_image_url(self, task):
image_url = task['data'].get(self.value) or task['data'].get(DATA_UNDEFINED_NAME)
if image_url.startswith('s3://'):
# presign s3 url
r = urlparse(image_url, allow_fragments=False)
bucket_name = r.netloc
key = r.path.lstrip('/')
client = boto3.client('s3')
try:
image_url = client.generate_presigned_url(
ClientMethod='get_object',
Params={'Bucket': bucket_name, 'Key': key}
)
except ClientError as exc:
logger.warning(f'无法为 {image_url} 生成预签名 URL. 理由: {exc}')
# 示例值 /data/upload/8/936bcb98-6535-11ec-85f0-594e4647184a.png
return image_url
def predict(self, tasks, **kwargs):
assert len(tasks) == 1
task = tasks[0]
image_url = self._get_image_url(task)
image_path = self.get_local_path(image_url, project_dir=self.image_dir)
# 加载图片
image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
_result_mask = np.zeros(image.shape[:2], dtype=np.uint16)
# 获得预测
model_results = inference_detector(self.model, image_path)
result_box = model_results[0] # 标框区域数据
result_mask = model_results[1] # Mask数据
results = []
all_scores = []
img_width, img_height = get_image_size(image_path)
# 把 model_results 改成 result_box 就和示例 mmdetection 一样
# for bboxes, label in zip(model_results, self.model.CLASSES):
iterabl = 0
for bboxes, label in zip(result_box, self.model.CLASSES):
output_label = self.label_map.get(label, label)
if output_label not in self.labels_in_config:
# print('在项目配置中找不到 ' + output_label + ' 标签.')
iterabl += 1
continue
_iter = 0
for bbox in bboxes:
# 示例值 [173.1038, 197.33136, 747.7704, 556.80554, 0.97078586]
bbox = list(bbox)
if not bbox:
continue
score = float(bbox[-1])
if score < self.score_thresh:
continue
x, y, xmax, ymax = bbox[:4]
# 将 mask 换为 RGBA 图像
got_image = PIL.Image.fromarray(result_mask[iterabl][_iter])
rgbimg = PIL.Image.new("RGBA", got_image.size)
rgbimg.paste(got_image)
datas = rgbimg.getdata()
# 使 RGBA 图像像素透明
newData = []
for item in datas:
if item[0] == 0 and item[1] == 0 and item[2] == 0:
newData.append((0, 0, 0, 0))
else:
newData.append(item)
rgbimg.putdata(newData)
# 从图像中获取像素
pix = np.array(rgbimg)
# rgbimg.save("test/test"+output_label+str(_iter)+".png")
# 编码为 rle
result_mask_iter = encode_rle(pix.flatten())
results.append({
"original_width": x,
"original_height": y,
'from_name': self.from_name,
'to_name': self.to_name,
'type': 'brushlabels',
'value': {
'brushlabels': [output_label],
"rle": result_mask_iter,
"format": "rle",
},
'score': score
})
all_scores.append(score)
_iter += 1
iterabl += 1
avg_score = sum(all_scores) / max(len(all_scores), 1)
return [{
'result': results,
'score': avg_score
}]
回到根目录下,执行以下命令,创建并初始化 目标分割预标注 项目目录,并下载相应的算法模型,再运行预标注服务。
# 创建并初始化目录
label-studio-ml init mask-segmentation --from label_studio_ml/examples/mask_segmentation/mask_segmentation.py
# 下载相应的算法模型
cd mask-segmentation
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
mkdir checkpoints
cd checkpoints
wget http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
# 回到根目录运行
cd ../../..
label-studio-ml start mask-segmentation --with config_file=mask-segmentation/mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py checkpoint_file=mask-segmentation/mmdetection/checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth hostname=http://localhost:8081 -p 8082
其中 hostname=http://localhost:8081
是 Label Studio 的访问地址,8082
是 目标分割预标注 服务的访问端口,这里按实际情况进行修改。
然后在 Label Studio 项目的 Settings / Machine Learning 页面配置好 目标分割预标注 服务。
最后在 Label Studio 项目的 Settings / Labeling Interface 页面选择 Computer Vision > Semantic Segmentation with Masks 标注模板,并按下面的格式配置预标注项:
<Label value="Airplane" predicted_values="airplane" background="rgba(255, 0, 0, 0.7)"/>
<Label value="Car" predicted_values="car" background="rgba(0, 0, 255, 0.7)"/>
我们可以直接使用 MMDetection 已经提供的 81 个预训练模型,具体请看 COCO标签的完整列表,在其中选择需要的模型,填入 value
和 predicted_values
的值就可以生效。
待标注图片:
待标注图片.jpg
预标注演示:
预标注页面.png
网友评论