题目
Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2.
Note:
The length of both num1 and num2 is < 110.
Both num1 and num2 contains only digits 0-9.
Both num1 and num2 does not contain any leading zero.
You must not use any built-in BigInteger library or convert the inputs to integer directly.
分析
手撸高精度,没什么好说的,就按照列乘法列竖式计算的思想写就好了。
实现
class Solution {
public:
string multiply(string &num1, string &num2) {
string ans="0";
int i=num2.size()-1;
while(i>=0){
string tmp = oneMulti(num1, num2[i]);
if(tmp!="0"){
for(int j=i; j<num2.size()-1; j++){
tmp += '0';
}
ans = add(ans, tmp);
}
i--;
}
return ans;
}
private:
string add(string &num1, string &num2){
string ans;
int i=num1.size()-1, j=num2.size()-1, carry=0;
while(i>=0 && j>=0){
int n = num1[i] - '0' + num2[j] - '0' + carry;
carry = n / 10;
ans += (n % 10) + '0';
i--; j--;
}
while(i>=0){
int n = num1[i] - '0' + carry;
carry = n / 10;
ans += (n % 10) + '0';
i--;
}
while(j>=0){
int n = num2[j] - '0' + carry;
carry = n / 10;
ans += (n % 10) + '0';
j--;
}
if(carry>0)
ans += carry + '0';
reverse(ans.begin(), ans.end());
return ans;
}
string oneMulti(string &num1, char num2){
if(num2=='0') return "0";
string ans;
int i=num1.size()-1, carry=0;
while(i>=0){
int n = (num1[i] - '0') * (num2 - '0') + carry;
carry = n / 10;
ans += (n % 10) + '0';
i--;
}
if(carry>0)
ans += carry + '0';
reverse(ans.begin(), ans.end());
return ans;
}
};
思考
我这里用了两个子函数,但是看到别人的方法中有不用子函数的,很是好奇。发现他巧妙地将两个子函数的功能直接放在循环中完成了,贴上他的代码欣赏下。
class Solution {
public:
string multiply(string num1, string num2) {
int n1 = num1.size(), n2 = num2.size();
string result(n1 + n2, '0');
for (int i = n1 - 1; i >= 0; i--) {
int carry = 0;
for (int j = n2 - 1; j >= 0; j--) {
int sum = result[i + j + 1] - '0';
sum += carry + (num1[i] - '0') * (num2[j] - '0');
result[i + j + 1] = '0' + sum % 10;
carry = sum / 10;
}
result[i] = result[i] + carry;
}
int start = 0;
while (start < n1 + n2 && result[start] == '0') start++;
return start == n1 + n2 ? "0" : result.substr(start);
}
};
网友评论