美文网首页
pytorch中多种优化器性能比较

pytorch中多种优化器性能比较

作者: 风中逍锋 | 来源:发表于2020-11-12 11:27 被阅读0次

    此文章使用Pytorch进行多种优化器的性能比较,构建两层神经网络进行函数的拟合,使用不同的优化器进行优化,具体代码如下:

    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    %matplotlib inline
    LR =0.01
    BATCH_SIZE=32
    EPOCH=12
    x=torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
    y=x.pow(2)+0.1*torch.normal(torch.zeros(*x.size()))
    torch_dataset=Data.TensorDataset(x,y)
    loader=Data.DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True)
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net,self).__init__()
            self.hidden=torch.nn.Linear(1,20)
            self.predict=torch.nn.Linear(20,1)
        def forward(self,x):
            x=F.relu(self.hidden(x))
            x=self.predict(x)
            return x
        
    net_SGD=Net()
    net_Momentum=Net()
    net_RMSProp=Net()
    net_Adam=Net()
    nets=[net_SGD,net_Momentum,net_RMSProp,net_Adam]
    opt_SGD=torch.optim.SGD(net_SGD.parameters(),lr=LR)
    opt_Momentum=torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.9)
    opt_RMSProp=torch.optim.RMSprop(net_RMSProp.parameters(),lr=LR,alpha=0.9)
    opt_Adam=torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))
    optimizers=[opt_SGD,opt_Momentum,opt_RMSProp,opt_Adam]
    loss_func=torch.nn.MSELoss()
    loss_his=[[],[],[],[]]
    for epoch in range(EPOCH):
        for step,(batch_x,batch_y) in enumerate(loader):
            for net,opt,l_his in zip(nets,optimizers,loss_his):
                output=net(batch_x)
                loss=loss_func(output,batch_y)
                opt.zero_grad()
                loss.backward()
                opt.step()
                l_his.append(loss.data.numpy())
    labels=['SGD','Momentum','RMSProp','Adam']
    
    for i,l_his in enumerate(loss_his):
        plt.plot(l_his,label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim(0,0.2)
    plt.show()
    

    结果如图所示:


    四种优化器实验结果

    相关文章

      网友评论

          本文标题:pytorch中多种优化器性能比较

          本文链接:https://www.haomeiwen.com/subject/wtoubktx.html